Theoretical study of magnetic domain walls
through a cobalt nanocontact

Laszlé Balogh, Krisztian Palotés, Laszlé Udvardi and
Laszlé Szunyogh

Department of Theoretical Physics
Budapest University of Technology and Economics

Budapest, 22 June 2012

This work has been developed in the framework of the project
“Talent care and cultivation in the scien'Eific workshops of BME" project.
This project is supported by the grant TAMOP-4.2.2.B-10/1-2010-0009



Table of contents

@ Experimental preliminaries

@ Heisenberg model

© Calculation details

@ Anisotropy



Experimental preliminaries

@000

The Kondo effect in ferromagnetic atomic contacts
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Figure 1| Conductance of amonatomic contact. a, Example of a trace where
we record the conductance while stretching a nickel wire using a scanning
tunnelling microscope (STM) at 4.2 K. Inset, model of a monatomic contact.
b, Conductance histograms constructed for iron, cobalt and nickel from
thousands of such traces. The position of the first peak of in each histogram
corresponds to the conductance of the monatomic contact. ¢, Differential

M. R. Calvo, et al., Nature, 458, 1150, (2009)
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The Kondo effect in ferromagnetic atomic contacts
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conductance curves recorded at the monatomic contact as a function of the
applied voltage. A characteristic resonance appears at small bias that fits the
Fano line shape. All possible symmetries are found in the spectroscopy of
iron, cobalt and nickel contacts, and the width of the resonance is the main
difference between the spectra of the three materials. This width is
proportional to the Kondo temperature.

M. R. Calvo, et al., Nature, 458, 1150, (2009)
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The Kondo effect in ferromagnetic atomic contacts
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Figure 2 | Histograms of inferred Kondo temperatures for iron, cobalt and
nickel. The histograms are constructed from more than 200 fittings and
normalized to the total number of curves fitted. The continuous lines show
the fits of the data to log-normal distributions of Tx with a different most
probable value for each material.

M. R. Calvo, et al., Nature, 458, 1150, (2009)
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Model of the nanocontact
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Model of the nanocontact

Fig. 1. (A) Kondo sig- os5/A Au-Cgg-AU

nal for Cg, with Au

electrodes at T = 1.5

K. At B = 0 (red line),

there is a zero-bias =

peak in G(V) that <5 /
<

Ni-Ni

becomes split for B =
10 T (black line). (B)
Scanning electron /
micrograph of a Ni

break junction. The \/
magnetic field is I s S
applied in the horizon- v (SW) 3 k=i 1 um 200 B(S\T) 300
tal direction. (Inset)

Close-up of the junction region after electromigration. (C) Tunneling magnetoresistance near V = 0
at T = 4.2 K of a Ni contact after electromigration, with no C,; molecule present.

A. N. Pasupathy, et al., Science, 306, 86, (2004)
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Heisenberg model |.

o H= %Zij Jjjdidj: invariant under global spin rotation
@ Boundary condition: invariant under global spin rotation
around the (110) direction
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Heisenberg model |.
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e H =35> ;J;j0i0): invariant under global spin rotation

@ Boundary condition: invariant under global spin rotation
around the (110) direction
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Heisenberg model II.

o Higher order terms
Ho = Jo [ (5152) (5354) + (5253) (5451) + (5153) (5254)]

(see, e.g., S. Lounis, P. H. Dederichs, Phys. Rev. B 82, 180404 (2009))
@ Tensorial couplings (SOC)

+%(J,-,-+J,.JT)fJ}j
—‘r%(JU—Ji}—)

@ On-site anisotropy (SOC)
K(0) = —Kazsin?(0)
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Rotational energy

We rotated the exchange field at each atomic sites around the

(110) axis.
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Dashed line: —15.2 [meV] cos(260)
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Calculation |.: KKR

Potential = atomic potentials 4+ constant

Scattering path operator:

7(e) = (1) — Go(e))

1 e
Band energy: E, = ——Im / TrinT(e)de
™ —00

a
°

Change of the single site t-matrix:

At = i[ejod, tj]Adia

e . 0;
: 2 o First derivative of the band energy:
; E 1 €F
it Uy (‘38¢.b = Re/ Tr {7ii [€iad, mi]} de
[Je3 —00



Calculation details
oce

Calculation Il.: Newton-Raphson

O, PE,

a¢ia o a¢iaa¢jﬁ o

_ f'(xn)
fl/(xn)

@ Derivatives of Ey:

@ Newton-Raphson iteration: x,+1 = X,

Starting configuration: MC simulated annealing
Once the Newton-Raphson iteration has converged,

new effective potentials are generated

and the procedure is repeated until the effective potential
converged and the “gradient” Ey is disappeared.
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Uniaxial anisotropy

Eband(---a v, ®, \/):

~~
fixed fixed

) 4

SN KIY(, )

=0 m=—¢

Uniaxial anisotropy:

K- 4y/2 (322 - 1)
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Uniaxial anisotropy

'.:.-' 2 Enw — Ecw  2(/2K?
:’ 85% 13.4 24.0
. 90% 20.5 28.4
oo 95% 28.1 31.4
*pe 100% 32.0 30.6
105% 32.1 29.2
Epand(oor Vs 9 ) = 110% 30.5 26.9
fixed fixed 115% 27.8 24.2
00 V4
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Uniaxial anisotropy:
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Decreased coordination =

increased moments and anisotropy

3 layer 2 layer 1 layer |central atom % g g
g ¥ Hspin (Us)
ispin (1iB) @ \d 24
} 2
3. layer 2. lay 1. lay: tral a
- 2.0
61
. @ ("~ ud 18
fees () @ @ @ = & 1.6

o Top layer: pispin = 1.82 ug; ftorb = 0.14 g
@ Bulk: pispin = 1.67 ug; piorb = 0.08 g
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Expansion coefficients K;” (meV)

Table 1. Expansion coefficients K" (in units of meV) of the band energy of the contact, see Eq. (9), according to real spherical
harmonics R} up to £ =4

4

m =085 z=0.90 =095 x =100 x =105 =110 =115
10 —240 —247 —235 —212 —192 —176 —159
2 0 —25.3 —30.0 —33.2 —32.4 —30.9 —28.4 —25.6
2 2 4.30 2.54 1.39 0.51 —0.29 —0.92 —1.36
3 0 4.12 3.06 1.63 0.71 —0.28 —1.43 —2.67
3 2 —0.199 —0.083 0.004 0.108 0.196 0.267 0.293
4 0 —0.63 1.72 4.60 4.94 5.05 4.85 4.32
4 2 0.033 0.125 0.184 0.108 0.051 0.001 —0.052
4 4 —0.007 —0.005 —0.018 —0.041 —0.088 —0.187 —0.345

E(O_") = Eanis(ﬁ) + 52.’@5’}
J

The Dyp, point-group allows the following terms:

Eunis(7) = KIRY() + KERE() + KERA()



Summary

http://arxiv.org/abs/1205.4579

@ We have developed a computational technique on first

principle footing to find non-collinear ground state of complex
magnetic clusters.

@ The formation of the cycloidal wall against a helical wall is

primarily driven by the uniaxial on-site anisotropy at the cetral
site.
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Thank you for your attention
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