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Motivation
Magnetic properties of low dimensional systems often differ considerably from their bulk
counterparts. We studied the effect of the enhanced magnetic anisotropy on the
formation of a domain wall through a point contact.

Computational details
Model of the point contact: two identical pyramids facing each other between
(001) interfaces of fcc Co.

Figure: (a) The geometry of the contact
viewed from the (110) direction. The length of
the contact is tuned via x = 0.85, 0.90, 0.95,
1.00, 1.05, 1.10, and 1.15. (Note: only the
marked distances were scaled; a denotes the
nearest neighbor distance in the fcc structure.)
(b) Sketch of the embedded cluster. Blue
circles: selected atoms of the cobalt leads, orange
circles: cobalt atoms in the nanocontact, and
empty circles: empty spheres around the contact.
The directions of magnetization in the leads are
marked by blue arrows.

Electronic structure calculation:
Fully relativistic screened KKR embedded cluster Green’s function method. [1]

The magnetic ground state configurations were determined by a Newton-Raphson
algorithm using analytical derivatives of the band energy. [2, 3]

Domain wall configuration
From symmetry reasons, two different orientations are possible for the
central atom. In a cycloidal wall the magnetization of the central atom points to the
(110) direction; in a helical wall it is parallel to the axis of the point-contact.

The cycloidal and the helical spin configurations can be transformed into each other in
term of a spin rotation around the axis parallel to the magnetization of the leads.
According to a non-relativistic description, the energy of the system
remains constant in such a spin rotation.

Figure: Sketch of the cycloidal (left) and
the helical (right) domain wall. In the
cycloidal case, all the spin moments are confined
to the plane of the sheet. In the helical case, the
magnetic moments at all sites remain
perpendicular to the axis of the point contact.

Figure: The ground state configuration:
cycloidal domin wall. The lengths of the
arrows, indicated also with color coding, are
proportional to the size of the spin magnetic
moments.

Ground state: the cycloidal domain wall turned out to be the ground state in the
whole stretching range.

Why the cycloidal domain wall has lower energy?
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Figure: Enhancement, as well as anisotropy
of the orbital moment at the central site of
the contact.
Left: The spin- and orbital moments of the
central atom.
Above: Diamonds: Calculated energy differences
between the helical and cycloidal domain walls,
EHW − ECW, circles: on-site uniaxial magnetic
anisotropy energy of the central atom (see below).

Rotational energy of the domain walls
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Figure: The band energy of the nanocontact while
rotating the exchange field at each atomic sites
simultaneously around the (110) axis. By rotating
all the spins by 90◦ the system goes over from the
cycloidal wall (CW) into the helical wall (HW).
The dashed line denotes the leading Fourier
component of the band energy,
−15.2 [meV] cos(2θ).

Symmetry

The band energy along the simultaneous
rotation of the spin directions around the
axis parallel to the magnetization of the
leads is analyzed. Due to time reversal
symmetry, the cycloidal and the helical
domain wall configurations are two fold
degenerate.

Fourier expansion

The rotational energy can be expanded in
term of the cos(2kθ) functions. We found
that in each case the K2 cos(2θ) adds the
largest weight.

Energy barrier

The energy barrier between the two
different domain wall configurations is
plotted in the previous section. For the
unstretched nanocontact it is
EHW − ECW = 32.0 meV.

Magnetic anisotropy of the central atom
Spherical harmonics expansion

We analyzed the band energy of the point-contact, Eb(σ), with σ
denoting the spin-orientation at the central atom, whereas the
spin-orientations of all the other sites in the contact were kept fixed.
The following expansion was carried out:

Eb(σ) =
∑
`,m

K m
` Rm

` (σ) (1)

Table: Expansion coefficients K m
` (in units of meV) of the band energy of the contact, see Eq. (1),

according to real spherical harmonics Rm
` up to ` = 4. The first row corresponds to the Weiss field and

the second row to the uniaxial anisotropy.

` m Rm
` x = 0.85 x = 0.90 x = 0.95 x = 1.00 x = 1.05 x = 1.10 x = 1.15

1 0 1
2

√
3
πz −240 −247 −235 −212 −192 −176 −159

2 0 1
4

√
5
π

(
3z2 − 1

)
−25.3 −30.0 −33.2 −32.4 −30.9 −28.4 −25.6

2 2 1
4

√
15
π

(
x2 − y 2

)
4.30 2.54 1.39 0.51 −0.29 −0.92 −1.36

3 0 1
4

√
7
π

(
5z3 − 3z

)
4.12 3.06 1.63 0.71 −0.28 −1.43 −2.67

3 2 1
4

√
105
π

(
x2 − y 2

)
z −0.199 −0.093 0.004 0.108 0.196 0.267 0.293

4 0 3
16

√
1
π

(
35z4 − 30z2 + 3

)
−0.63 1.72 4.60 4.94 5.05 4.85 4.32

4 2 3
8

√
5
π

(
x2 − y 2

) (
7z2 − 1

)
0.033 0.125 0.184 0.108 0.051 0.001 −0.052

4 4 3
16

√
35
π

(
x4 − 6x2y 2 + y 4

)
−0.007 −0.005 −0.018 −0.041 −0.088 −0.187 −0.345

Relation with the Heisenberg model

According to a Heisenberg model extended by relativistic corrections [2, 4] the energy
in Eq. (1) can be expressed as

EHeis(σ) = σ
∑

j

Jcjσj + Eanis(σ). (2)

The second term can be further expanded (up to ` = 4) in agreement with the
tetragonal, D4h, point-group symmetry:

Eanis(σ) = K 0
2 R0

2 (σ) + K 0
4 R0

4 (σ) + K 4
4 R4

4 (σ) . (3)

The other terms ((`,m) = (2, 2), (3, 0), (3, 2) and (4, 2)) which are not consistent with
the D4h symmety are related to higher order spin interactions.
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