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László Udvardi1, László Szunyogh1 and Ulrich Nowak2

1 Department of Theoretical Physics, Budapest University of Technology and Economics,
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Abstract. In order to study the finite temperature behavior of magnetic nanoparticles a
novel Monte Carlo method has been developed. The energy of a new trial configuration during
the simulation is calculated directly from the expansion of the band energy avoiding a set up
of an a priori Heisenberg-type model. The electronic structure of the cluster is determined
by means of the embedded-cluster Green’s function technique based on the Korringa–Kohn–
Rostoker method within the local spin-density approximation of the density functional theory.
As a benchmark the ground state of anti-ferromagnetic clusters and the temperature dependence
of the magnetization of a flat square cluster of 16 Co atoms on a Cu(001) surface have been
studied.

1. Introduction

Nano-sized magnetic structures get particular attention nowadays, because of their promising
perspective in magnetic data storage technology. A large amount of experimental [1, 2] and
theoretical [3, 4] work is currently focusing on magnetic systems with reduced symmetry such
as thin films and atomic size clusters.

The magnetic properties of a wide class of systems are often described by the classical
Heisenberg model,

H =
1

2

∑

i,j

Jijσiσj , (1)

where σi is a unit vector pointing along the magnetization at site i and Jij is the exchange
coupling between site i and site j. In order to include the effect of the spin-orbit coupling,
which turned out to be important for low dimensional systems [5], the model in Eq. (1) can be
extended by using tensorial exchange couplings and by additional on-site anisotropy terms. For
layered systems the coupling constants exhibit translational symmetry and the symmetry of the
lattice structure determines the form of the on-site anisotropy. For (001) and (111) surfaces of
cubic materials, e.g., the leading on-site term is an uniaxial anisotropy. However, in the case of
magnetic clusters the translational symmetry is removed and the parameterization of the on-site
anisotropy gets complicated due to the reduced symmetry of the system. Moreover, theoretical



studies on small Cr clusters on Au (111) surface pointed out [6] that higher order spin-spin
interactions must not be neglected in the model. In order to overcome these complications, in
this work we present a new scheme for Monte Carlo (MC) simulations where the change of the
energy for every MC step is calculated directly from the electronic structure of the cluster.

In the next sections the method is briefly described and applications for the ground state of
frustrated antiferromagnets and a comparison with a MC study based on a Heisenberg model
are presented.

2. Computational method

The electronic structure of the cluster deposited on surface has been calculated by means of the
embedded-cluster Green’s function technique based on the fully relativistic screened Korringa–
Kohn–Rostoker method [7] within the local spin-density approximation of the density functional
theory. The energy of the different magnetic configurations is determined by using the band
energy within the magnetic force theorem [8]. In our approach the electronic and magnetic
degrees of freedom are adiabatically decoupled [9], which allows for a calculation of the energy
E{σ} of any spin-configuration {σ}.

In the Monte Carlo simulations the Metropolis algorithm has been applied with single spin
flip dynamics to ensure detailed balance. The trial step of the algorithm is a small rotation
of a randomly chosen spin arround its current direction, a choice which is symmetric and
guarantees ergodicity [10]. The calculation of the band energy of each trial configuration would
be extremely time consuming. In order to make the procedure numerically feasible the band
energy is expanded up to second order around a given configuration {σ0},
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where the derivatives of the band energy with respect of the transverse change of the
magnetization can be analytically calculated by using the Lloyd’s formula [11]. To maintain the
accuracy of the expansion, the trial direction of the magnetization is restricted to the vicinity
of the expansion center {σ0}. After several MC steps the derivatives are recalculated for the
new configuration and the trial directions are chosen around the new expansion center in order
to ensure the ergodicity of the procedure.

3. Results

As a simple test the ground state of an equilateral chromium trimer on a gold (111) surface
was studied by means of simulated annealing. Due to the antiferromagnetic couplings between
the Cr atoms this is the simplest example of a frustrated system. The ground state turned out
to be a 120◦ Néel-structure as shown in Figure 1 (a) and in agreement with other theoretical
works [12, 6]. It is worth mentioning that the degeneracy of the two kinds of Néel structures
with different chirality indices is lifted by the Dzyaloshinsky–Moriya (DM) interaction as it is
detailed in Ref. [6]. For a cluster of 36 chromium atoms ordered in an equilateral triangular
system on a Au (111) surface the simulations resulted in a non-collinear magnetic ground state
(see Figure 1 (b)) resembling the 120◦ Néel-structure. A similar ground state is reported for a
Cr monolayer on Cu(111) [13].

For a further test of our new type of finite temperature simulations, the temperature
dependence of the magnetization of a square-shaped cobalt clusters deposited on a Cu (100)
surface was compared with the results of a MC simulation based on a classical Heisenberg model.
The exchange couplings were determined for an 4 × 4 cluster using the method described in
Ref. [11]. An enhancement of the nearest neighbor exchange couplings has been found at the
corners and the edges of the cluster, while inside the cluster they have very similar values to the



(a) (b)

Figure 1. Ground state of the equilateral Cr3 (a) and Cr36 (b) clusters on a Au(111) surface
obtained from MC simulations. The arrows show the direction of the spin-magnetization.

nearest neighbor exchange in a complete monolayer. Interestingly, an opposite tendency has been
seen for the magnetic moments. The nearest neighbor couplings for the non-equivalent pairs and
the magnetic moments are summarized in Table 1. In the Heisenberg model only the isotropic
part of the exchange coupling and an easy-plane, uniaxial anisotropy were taken into account.
The anisotropy constant was chosen to be the same as that of a monolayer (K = 0.0228 mRyd).

For comparison, the thermal average of the square of the magnetization of the cluster was
calculated by the two methods. At a given temperature 105 and 104 MC steps were performed in
the Heisenberg and in the ab-initio MC simulations, respectively. Since the magnetic anisotropy
is small for the present system, the simulation based on the Heisenberg model was expected to
give similar dependence of the magnetization on the temperature as our ab-initio simulation.
The two result are in good agreement as shown in Figure 3.

Figure 2. Nearest neighbor couplings be-
tween the atoms in the 4 × 4 size cluster.

Table 1. Nearest neighbor coupling con-
stants and magnetic moments for the 4 × 4
Co cluster and the mono-layer.

Coupling
constants [mRyd]

Magnetic
moments [µB]

J1−5 5.59 m1 1.74
J5−6 5.27 m5 1.82
J5−9 4.49 m6 1.87
J6−10 4.19

Jmono-layer 4.26 mmono-layer 1.88

In order to check how accurately Eq. 1 describes the energy of the different magnetic
configurations a simple test has been performed. The magnetic orientation at site i was rotated
around the (100) axes while the other spins were kept frozen in the (001) direction. In the case
of the Heisenberg model the energy of the system is then given as E = cos (ϑ)

∑

j Jij . This
energy was compared to the energy provided by the embedded cluster calculation which was
done on the same magnetic configuration. Interestingly, the amplitude of the curve obtained
from the electronic structure calculations was 15% larger than the one from the Heisenberg
model. Including the simplest fourth order term the deviation decreased to 7%.
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Figure 3. Square root of the thermal average of the square of the magnetization for a 4 × 4
Co cluster on a Cu(001) surface. The solid line represents the magnetization of the Heisenberg
model, points refer to the ab-initio MC result.

4. Conclusions

We developed a new Monte Carlo method which avoids a setup of an a priori model Hamiltonian.
The energy changes during the simulation are determined directly from electronic structure
calculations. Relativistic effects such as magnetic anisotropy and DM interactions are naturally
included through the fully relativistic treatment of the electronic structure. As a benchmark
we determined the magnetic ground state of a frustrated antiferromagnetic systems and we
reproduced the magnetic behavior of a small Co cluster at finite temperature. We expect that
the novel method becomes a useful tool to explore magnetic properties of nano systems.
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[13] Kurz Ph, Bihlmayer G, Hirai K and Blügel S 2001 Phys. Rev. Lett. 86 1106–1109


