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Thickness-dependent magnetic structure of ultrathin Fe/Ir(001) films: From spin-spiral states
toward ferromagnetic order
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We present a detailed study of the ground-state magnetic structure of ultrathin Fe films on the surface of
fcc Ir(001). We use the spin-cluster expansion technique in combination with the relativistic disordered local
moment scheme to obtain parameters of spin models and then determine the favored magnetic structure of the
system by means of a mean-field approach and atomistic spin dynamics simulations. For the case of a single
monolayer of Fe, we find that layer relaxations very strongly influence the ground-state spin configurations,
whereas Dzyaloshinskii-Moriya (DM) interactions and biquadratic couplings also have remarkable effects. To
characterize the latter effect, we introduce and analyze spin collinearity maps of the system. While for two
monolayers of Fe we find a single-q spin spiral as ground state due to DM interactions, for the case of four
monolayers, the system shows a noncollinear spin structure with nonzero net magnetization. These findings
are consistent with experimental measurements indicating ferromagnetic order in films of four monolayers and
thicker.
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I. INTRODUCTION

By the end of the 20th century, in particular,
since the birth of spintronics, thin films and nanostructures
have gained increasing importance in industrial applications.
The increasing demand for ultrahigh density magnetic data
storage devices had been one of the greatest driving forces
of research and development involving nanostructures. With
current hard disk technology approaching the superparam-
agnetic limit, the study of finite-temperature magnetism in
thin films and nanostructures is inevitable. Ab initio electronic
structure methods give, in general, a very good description of
the ground-state properties of solids. When trying to describe
complex magnetic structures or finite-temperature magnetism,
these methods are often used to generate parameters of spin
models.

It is by now widely accepted that relativistic corrections to
the Heisenberg model, especially the Dzyaloshinskii-Moriya
(DM) interaction, play an important role in determining
the magnetic ground state of some systems.1–4 Moreover,
higher-order interaction terms (multiple spin interactions) also
have to be considered in many cases5–7 to give an accurate
description of magnetism. Very recent studies indicate that
such interactions may even lead to the formation of exotic
states like magnetic skyrmion lattices.8

In the present work, we demonstrate the use of spin
models from first principles for the description of magnetism,
in particular, determining the ground-state spin configura-
tion of thin-film systems. We use the spin-cluster expan-
sion (SCE) combined with the relativistic disordered local
moment (RDLM) theory to obtain model parameters. The
SCE-RDLM method has just been successfully applied to
the IrMn3/Co(111) interface, a prototype for an exchange
bias system, to calculate exchange interactions and magnetic
anisotropies.9

Here, we go beyond the tensorial Heisenberg model10 by
including biquadratic couplings in the spin Hamiltonian and
present our results for thin films of Fe on the (001) surface
of fcc Ir. Previous theoretical studies have found that in case
of a single Fe overlayer, the favored magnetic configuration
depends very strongly on layer relaxations, leading to the for-
mation of spin spiral states near the experimental geometry.11

We study the effect of layer relaxations on the magnetic
interactions for the case of a monolayer, as well as the effect
of higher-order interactions on the spin configuration. We also
examine thicker films consisting of two and four layers of Fe
to see whether the bulk ferromagnetism of Fe emerges with
increasing film thickness. Experiments have shown that thin
films of Fe consisting of four or more monolayers produce
a ferromagnetic signal in magnetooptic Kerr effect (MOKE)
measurements with an in-plane easy axis.12 The results of our
simulations turn to be consistent with the main experimental
findings.

II. THEORY

A. Spin model

The most widely used ab initio methods to describe
itinerant magnetic systems rely on the adiabatic approximation
separating fast single-electron spin fluctuations from the slow
transversal motion of the spins.13 Furthermore, in the so-called
rigid spin approximation, it is assumed that longitudinal
fluctuations of the local moments are negligible, so that the
system of N moments is characterized by a set of unit vectors
{�e} = {�e1, . . . ,�eN } describing the orientation of each local
moment. Then the grand potential �({�e}) of the system may
be thought of as a classical spin Hamiltonian,14 which can be
used in numerical simulations to study the various magnetic
properties of the system.
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For practical applicability, the energy must be parametrized
in a simple yet meaningful way. The most common approxi-
mation is a form of a generalized Heisenberg model,

�({�e}) = �0 +
N∑

i=1

�ei Ki �ei − 1

2

N∑
i,j = 1
(i �= j )

�ei Jij �ej , (1)

where Ki and Jij are the second-order on-site anisotropy
matrices and tensorial exchange couplings, respectively. The
latter can be meaningfully decomposed into an isotropic
component J I

ij = TrJij /3, an antisymmetric component JA
ij

and a traceless symmetric part JS
ij . The isotropic component

describes a Heisenberg interaction, the antisymmetric part
corresponds to the DM interaction15,16 in the form of

�ei JA
ij �ej = �Dij (�ei × �ej ), (2)

and the final component contributes to the so-called two-
site anisotropy. In this paper, we go beyond the second-
order expansion of Eq. (1) and include isotropic biquadratic
interaction terms of the form −Bij (�ei · �ej )2.

Even though a parametrization of the energy with a spin
Hamiltonian possesses a much less direct connection to the
magnetic properties of the system, it can be used well to
simulate the magnetic behavior. One method for obtaining
the parameters of the spin Hamiltonian directly from first-
principles calculations is the so-called spin-cluster expansion
(SCE) combined with the relativistic disordered local moment
scheme (RDLM).

B. Spin-cluster expansion

The spin-cluster expansion developed by Drautz and
Fähnle17,18 gives a systematic parametrization of the adiabatic
energy surface. Up to two-spin interactions, the grand potential
may be expanded using real spherical harmonics as

�({�e}) � �0 +
∑

i

∑
L �=(0,0)

JL
i YL(�ei)

+ 1

2

∑
i �=j

∑
L �=(0,0)

∑
L′ �=(0,0)

JLL′
ij YL(�ei)YL′(�ej ), (3)

where the summations do not include the constant spherical
harmonic function of the composite index (�,m) = (0,0). The
coefficients in Eq. (3) are defined as

�0 = 〈�〉, (4)

JL
i =

∫
d2ei〈�〉�ei

YL(�ei), (5)

JLL′
ij =

∫
d2ei

∫
d2ej 〈�〉�ei �ej

YL(�ei)YL′(�ej ), (6)

where vectors in lower index indicate restricted averages, i.e.,
uniform directional averaging has to be carried out with respect
to every spin in the system not noted in the lower index.

The terms of the spin Hamiltonian can be directly related
to the terms of the SCE, for instance, the isotropic biquadratic
couplings can be expressed as

Bij = − 3

8π

2∑
m=−2

J
(2,m)(2,m)
ij . (7)

Clearly the key quantities of the SCE are the restricted
directional averages of the grand potential.

C. Relativistic disordered local moment theory

The DLM scheme gives a description of a magnetic
system in accordance with the adiabatic approximation. Its
implementation within the Korringa-Kohn-Rostoker (KKR)
theory was given by Györffy et al.,14 with a relativistic
generalization by Staunton et al.19,20 Combining it with the
SCE provides a highly effective tool for determining the
parameters of spin models. For a detailed presentation of the
SCE-RDLM method see Ref. 9. In the following, we will
review the most important features of the theory.

The electronic charge and magnetization densities are
determined from a self-consistent-field KKR calculation. In
good moment systems the magnitude of local moments may
be considered as independent from their orientation. For a
given set of self-consistent potentials, charge and local moment
magnitudes, the orientations {�e} of the local moments are
accounted for by the similarity transformation of the single-site
t matrices,

t i(�ei) = R(�ei)t i(�ez)R(�ei)
†, (8)

where t i(�ez) ≡ t i(ε; �ez) is the t-matrix for a given energy, ε (not
labeled explicitly), with exchange field along the z axis, and
R(�ei) is the representation of the SO(3) rotation that transforms
�ez into �ei . Underlines denote matrices in the (κ,μ) angular
momentum representation.

The coherent potential approximation (CPA) is employed to
describe the magnetically disordered system. The strategy of
the CPA is to substitute the disordered system with an effective
(coherent) medium that is independent from the orientation of
local moments, such that the scattering of an electron in the
effective medium should resemble the average scattering in
the disordered physical system. The scattering path operator
of the effective medium is defined as

τ
c
= (

t−1
c

− G
0

)−1
, (9)

where double underlines denote matrices in site-angular
momentum space, G

0
is the matrix of structure constants,

and t
c

is site diagonal. Using the excess scattering matrices
defined as

Xi(�ei) = {[
t−1
c,i − t−1

i (�ei)
]−1 − τ c,ii

}−1
(10)

the single-site CPA condition can be formulated as∫
d2ei Xi(�ei) = 0. (11)

Within validity of the magnetic force theorem, the grand
potential of the system can be expressed in terms of the excess
scattering matrices and the related impurity matrices

Di(�ei) = {
I + [

t−1
i (�ei) − t−1

c,i

]
τ c,ii

}−1
(12)
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for a given spin configuration and at zero temperature as

�({�e}) = �c − 1

π

∑
i

Im
∫ εF

dε ln det Di(�ei)

− 1

π

∞∑
k=1

1

k

∑
i1 �=i2 �=···�=ik �=i1

Im
∫ εF

dεTr
[
Xi1

(�ei1

)
τ c,i1i2

×Xi2

(�ei2

) · · ·Xik

(�eik

)
τ c,ik i1

]
, (13)

where the constant term reads as

�c = −
∫ εF

dε N0(ε) − 1

π
Im

∫ εF

dε ln det τ
c
(ε), (14)

N0(ε) being the integrated density of states of free electrons.
Equation (13) can be used to calculate restricted averages of
the grand potential for the SCE, Eqs. (4)–(6). In particular, the
two-site expansion terms are expressed as

JLL′
ij = − 1

π
Im

∫ εF

dε

∫ ∫
d2ei d2ej YL(�ei)YL′(�ej )

× Tr ln[I − Xi(�ei)τ c,ijXj (�ej )τ c,ji], (15)

implying that higher-order two-site terms, such as biquadratic
couplings, see Eq. (7), can be calculated just as easily as
tensorial Heisenberg interactions.

III. RESULTS

A. Computational details

We used the screened Korringa-Kohn-Rostoker (SKKR)
method21,22 to perform self-consistent field (scf) calculations
for fcc bulk Ir and the layered Fe/Ir(001) systems. The in-plane
lattice constant (a2d) for the fcc lattice was chosen 2.715 Å.12

We used the local spin-density approximation parametrized
according to Ceperley and Alder,23 and we employed the
atomic sphere approximation with an angular momentum
cutoff of �max = 3. A scalar-relativistic DLM description was
used, corresponding to the paramagnetic state. Matrices of the
effective CPA medium were determined to a relative error of
10−5. We used 12 energy points on a semicircular path on
the upper complex half-plane for the energy integrations, and
78 points were sampled in the irreducible wedge of the 2D
Brillouin zone (BZ) for k integrations.

According to experimental evidence,12 in most cases we
used layer geometries that differed from the ideal (bulk)
geometry due to the change of interlayer spacings, in particular,
at the interface between the substrate and the Fe film and inside
the film. Such perpendicular layer relaxations can easily be
taken into account within the KKR method,24 whereby the
volumes of the corresponding atomic spheres must be scaled
with the relaxation rates. As an example, in case of 12% inward
relaxation of an Fe monolayer, the radius of the Fe sphere was
reduced from 2.8351 bohr to 2.5873 bohr. Furthermore, the
empty sphere layers above the Fe layer were uniformly shifted
toward the Fe monolayer by 12% as compared to the ideal
positions, thus, the ideal values were retained for the interlayer
spacings above the Fe monolayer and for the radii of the empty
spheres.

The spherical integrations needed for the SCE, as in
Eq. (15), were performed according to the Lebedev-Laikov
scheme.25 The logarithm in Eq. (15) was expanded into a

power series to avoid the phase problem due to the energy
integration of the complex logarithm.

B. Fe1/Ir(001)

Firstly, we performed calculations for the case of an Fe
monolayer. Along with the unphysical case of an unrelaxed
Fe monolayer, systems with different layer relaxations were
considered, namely, 5%, 10%, and 15% inward relaxations
as well as the experimental value of −12% relaxation.12

According to Kudrnovský et al.,11 we may expect a very strong
dependence of exchange parameters on the layer relaxation,
with a crossover of dominant Heisenberg couplings from
ferromagnetic (FM) to antiferromagnetic (AFM). The obtained
isotropic couplings are shown in Fig. 1.

For the unrelaxed geometry, all significant couplings are
ferromagnetic, which is in agreement with the fact that for
this case the total-energy calculations predict an FM ground
state.11 Indeed, we also found that the DLM state is by
about 1.4 mRy/Fe atom higher in energy than the FM state.
It is tempting to suppose that the SCE parameters should
be calculated by using the potentials and effective fields
as obtained from the FM ground state. Such a calculation
resulted, however, to AFM interactions for the first two nearest
neighbors (NN), −0.30 and −0.29 mRy, respectively, implying
an erroneous AFM (or noncollinear) ground state from the
spin model. The reason for this observation was an upward
shift of the minority spin states and a corresponding loss of
electrons at the Fe atoms when employing scf FM potentials
for a DLM spin configuration inherent to our SCE process.
We thus conclude that only the scf DLM state is compatible to
serve as reference for the SCE scheme described in Sec. II.

As clear from Fig. 1, with increasing inward relaxation,
the couplings for the first three shells become gradually
antiferromagnetic. For the case of experimental layer re-
laxation, the magnitude of the Heisenberg interactions is
small and comparable up to four shells. While the tendency
of the obtained curves is similar to those calculated by
Kudrnovský et al.,11 there are remarkable differences. In
particular, at the experimental layer relaxation our largest

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
−1.0

−0.5

0.0
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1.0

1.5

distance (a
2d

)

J I ij
 [

m
R

y]

 

 

unrelaxed
−5% relaxation
−10% relaxation
−12% relaxation (exp.) 
−15% relaxation

FIG. 1. (Color online) Isotropic couplings for various layer
relaxations in Fe1/Ir(001) as a function of interatomic distance in
units of the in-plane lattice constant, a2d.
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isotropic couplings are 1 mRy smaller than those obtained
in Ref. 11, corresponding to a difference by a factor of three.
Since the TB-LMTO-SGF method is known to give results
that agree very well with KKR we use, we performed a series
of check calculations to verify the reliability of our results.
Increasing the numerical precision of the spherical integrations
of the SCE, the convergence parameters of the CPA and the
number of k points for the BZ integration all resulted in
identical isotropic couplings within linewidth. Increasing the
number of energy points from 12 to 16 used for the energy
integrations in the self-consistent calculations also leads to
relative differences less than 2%.

We also performed calculations with spin-orbit coupling
scaled to zero26 as well as with the parametrization of the
local density approximation (LDA) according to Vosko, Wilk,
and Nusair.27 The differences in the dominating exchange
interactions from both sets of calculations were less than
0.1 mRy indicating that such factors are insufficient to explain
the quantitative difference between our interactions and those
of Kudrnovský et al.11

Due to the frustrated nature and small magnitude of
the isotropic exchange interactions it is possible that DM
interactions or biquadratic couplings affect the ground-state
spin configuration. The magnitude of these interactions for
the first two NN shells is shown in Table I. For higher
relaxation values, in particular for the experimental one,
the correction terms are indeed comparable to the isotropic
couplings. Interestingly, in our case the biquadratic couplings
all have positive sign indicating that these interactions favor
collinear spin configurations. This feature implies a competi-
tion between the frustrated AFM exchange couplings, the DM,
and the biquadratic interactions, possibly leading to complex
ground-state spin configurations.

The Fourier transform of the tensorial coupling matrices
was calculated to obtain the mean-field estimate, as explained
in Appendix. In the monolayer case, the Fourier transform
is a 3 × 3 tensor field defined on the two-dimensional BZ.
The largest eigenvalue J (�q) can be visualized as a surface
in reciprocal space. The mean-field estimate states that the
maximum points of the surface give the characteristic spatial
modulation of the ordered magnetic state to which the
paramagnetic state is unstable.

Reassuringly, the J (�q) surface for the unrelaxed system has
a pronounced maximum in the � point of the BZ, indicating
FM ground state. As the layer relaxation is increased, the
corresponding surfaces are gradually depressed at the � point,
giving way to new maxima in general points of the Brillouin
zone for −10% and larger inward relaxations. The contour

TABLE I. Calculated DM interactions and isotropic biquadratic
couplings, see Eq. (7), in Fe1/Ir(001). All values are given in mRy
units.

Layer relaxation 0% −5% −10% −12% −15%

| �Dij | 1st shell 0.023 0.142 0.244 0.280 0.331
2nd shell 0.156 0.207 0.209 0.198 0.170

Bij 1st shell 0.110 0.109 0.088 0.077 0.059
2nd shell 0.008 0.012 0.013 0.013 0.012

q
x
/(π/a

2d
)

q y/(
π/

a 2d
)
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FIG. 2. (Color online) J (�q) surface for Fe1/Ir(001) with experi-
mental relaxation. The color coding in units of mRy is shown on the
right.

plot of the J (�q) surface for experimental layer relaxation is
shown in Fig. 2. The maxima are around �q = (0.7,0.5) π

a2d
and

symmetry related points. This estimate suggests a complex
noncollinear spin structure due to the frustrated and competing
magnetic interactions detailed earlier. Note that there is
an approximate degeneracy along lines connecting pairs of
maxima. The difference between the maximum values of
the surface and its value at, for instance, �q = (0.6,0.6) π

a2d
is less then 0.03 mRy. This implies the possibility that the
actual ground state of the system is somewhere along these
degenerate lines, but not necessarily in the precise maxima of
the surface.

The effect of relativistic tensorial interactions may be
assessed by calculating the J (�q) surface using only the
isotropic part of the exchange tensors. In doing so, the shape
of the resulting surface is the same, however, its maxima are
shifted closer to the zone boundary, to �q = (0.85,0.45) π

a2d
,

and related points. The degeneracy of the line connecting the
maxima is remarkably decreased. Based on the mean-field
estimate, the ground-state spin configuration of Fe1/Ir(001) is
a spin spiral, the periodicity of which is largely affected by the
DM interactions.

As an implicit method for energy minimization, i.e., to
search for the magnetic ground state, we also performed zero-
temperature Landau-Lifshitz-Gilbert spin dynamics simula-
tions in which the Gilbert damping parameter was optimized
to aid this process. Due to the expected noncollinear structures,
we used a 128 × 128 lattice of spins along with free boundary
conditions to prevent the appearance of spurious periodicity.
Interactions were included up to 7a2d. It should be noted that
on-site anisotropy was not included in the simulations due to its
small size (0.06 mRy in case of experimental layer relaxation),
however, two-site anisotropy was included as the symmetric
part of the J

ij
tensors. For every relaxation, two kinds of

simulations were performed, one with and the other without
biquadratic coupling terms. Every simulation was initialized
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from a random spin configuration and continued until there
was no measurable difference (i.e., less than 10−6 mRy) in the
total interaction energy of the system.

In the case of unrelaxed geometry, the simulations led
to (out-of-plane) FM order as expected. As layer relaxation
is introduced, the transition predicted by the mean-field
estimates is reflected in the spin dynamics simulations as
well, as the ground states become complex spin spirals for
relaxations of −10% and above. The Fourier components of
the emergent spin configurations agree very well with the
mean-field estimates. Interestingly, for −15% relaxation, the
spin configuration of the simulated system contains a huge
number of domains with various orientations for the spin
spirals, which is in very good agreement with the degeneracy
of the J (�q) surface along the corresponding �q points.

It is expected that biquadratic couplings can significantly
affect the ground-state spin configuration when the tensorial
Heisenberg interactions alone lead to the formation of non-
collinear spin structures. This is the case for the experimental
layer relaxation for which the resulting spin-configurations
of the two simulations are shown in Fig. 3. The lattice
Fourier transform of the spin configuration in Fig. 3(a) has a
peak at �q ≈ (0.719,0.495) π

a2d
, which perfectly coincides with

the numerical maximum of the corresponding J (�q) surface.
Interestingly, the peak for the simulation including biquadratic
terms is at �q ≈ (0.735,0.500) π

a2d
, which is only very slightly

different from the previous value. Even though the two spin
structures in Fig. 3 seem very different, their spatial modulation
is almost identical. The main reason for this is that while in
Fig. 3(b) there is a clear two row-by-two row periodicity along
one direction, in Fig. 3(a), we can see a helical spiral along the
same direction with 90◦ angle between adjacent spins. Both
orderings have a period of 4a2d.

We may try to grasp the effect of biquadratic interactions
based on the real space spin structure. From the form of the bi-
quadratic coupling between two specific spins, −Bij (�ei · �ej )2,
it is clear that a coupling with positive sign favors collinear

FIG. 3. (Color online) Ground-state spin configurations of the Fe
monolayer with experimental layer relaxation (a) without and (b) with
biquadratic couplings.

alignment, either parallel or antiparallel. It is motivated that
positive biquadratic couplings acting on a noncollinear spin
configuration will try to increase the collinearity within the
system.

Let us define the collinearity of two spins as

coll(�ei,�ej ) = 2

π

∣∣∣∣ arccos(�ei ·�ej ) − π

2

∣∣∣∣, (16)

which is simply the deviation of the angle between the two
spins from a right angle, normalized between 0 and 1, 1
indicating most collinear arrangement (i.e., where �ei · �ej =
±1). Using this definition we may create a collinearity map
of any spin configuration, plotting at each site an averaged
collinearity defined as

coll(i) = 1

zi

∑
j

〈i,j〉

coll(�ei,�ej ), (17)

where the summation includes every first NN of site i and
correspondingly zi stands for the coordination number of site
i. The reason for the consideration of only first NN sites
is, besides practicality, the rapid spatial decay of biquadratic
couplings, suggesting that this interaction is mainly sensitive
to the first NN collinearity.

Using the above definitions, the calculated collinearity
maps from the two kinds of simulations are shown for
experimental relaxation in Fig. 4. The difference between the
two maps is remarkable. At first glance, we can see that the two
configurations have a completely different domain structure.
While in Fig. 4(a) there are smoothly connected domains of
low collinearity (0.22 on average), in Fig. 4(b), we can see
neatly separated, homogeneous domains of high collinearity
(0.67 on average). This is a clear indication that biquadratic
couplings have a serious effect on the magnetic structure in
this specific system.

C. Fe2/Ir(001)

Martin et al.12 found using MOKE measurements that Fe
films of 4 monolayers or thicker produce an in-plane FM signal
at room temperature. For the case of an Fe monolayer with
reasonable layer relaxations the theoretically predicted spin
spiral states have zero net magnetization, thus they would not
provide a MOKE signal. To see if the bulklike behavior of Fe
emerges for thicker films, we extended our studies to cases of
two and four monolayers of Fe on Ir(001).

The geometries of Fen/Ir(001), both for n = 2 and 4 were
assumed according to Ref. 12, with the minor simplification
that no layer relaxation was applied to the Ir substrate.
As shown in Fig. 5, the isotropic Heisenberg couplings we
obtained show a strong FM coupling between the two layers,
while the intralayer couplings are smaller, and in case of the
subsurface layer the dominant ones are AFM. It should be
mentioned that the DM interactions are one order of magnitude
smaller then the isotropic terms, and the biquadratic couplings
are even smaller by one order.

The J (�q) surface for the bilayer has its maximum near the �

point, but not exactly at the zone center. There is a degenerate
circle at |�q| ≈ 0.07 π

a2d
where the surface is maximal, predicting

a long-wavelength spin spiral. Considering only the isotropic
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FIG. 4. (Color online) Collinearity map for the approximate
ground state of Fe1/Ir(001) with experimental layer relaxation
(a) without and (b) with biquadratic couplings. The color coding
in units of mRy is shown on the right.

part of the exchange tensors the corresponding surface has its
maximum in the � point. This indicates that the DM interaction
imposes a noncollinear spin structure on the otherwise FM
system.

Since the number of neighbors within the same radius
rapidly increases with the number of Fe layers, the spin
dynamics simulations for the multilayers were performed with
in-plane system sizes of 64 × 64 sites. Figure 6 shows the
resulting spin configuration of the surface Fe layer for the
simulation including biquadratic couplings. Note that due to
the strong FM interlayer coupling the subsurface layer displays
a very similar pattern.

The Fourier transform of the spin configuration indicates
that the propagation direction of the spin spirals is not exactly
diagonal, since the wave vector is �q = (0.16,0.13) π

a2d
(and
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J I ij
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m
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Intralayer 1
Intralayer 2
Interlayer

FIG. 5. (Color online) Isotropic Heisenberg couplings in
Fe2/Ir(001) as a function of interatomic distance in units of the
in-plane lattice constant, a2d.

symmetry related points). The fact that �q is not along any
high-symmetry lines is consistent with the degeneracy seen
on the J (�q) surface, however, the magnitude of the wave
vector is twice as large as that of the mean-field estimate. This
quantitative difference can mainly be attributed to the flaws
of the mean-field approach, but we can not rule out finite-size
effects in the spin dynamics simulation.

The simulation without biquadratic interactions resulted
in a very similar pattern indicating that these interactions are
irrelevant in thicker films due to increased isotropic Heisenberg
couplings. Simulations performed using only the isotropic part
of the Heisenberg tensors led to the appearance of large FM
domains without the spin spiral pattern seen in Fig. 6. This
result is corroborated by several previous observations that the
DM interaction may significantly affect the ground-state spin
configuration, and even lead to the formation of spin spirals
in thin film systems.2,3 It is also interesting to note that a very
similar labyrinth pattern was found in a monolayer of Mn

FIG. 6. (Color online) Approximate ground-state spin configura-
tion of Fe2/Ir(001), surface layer shown from the top. Arrows are
colored according to z component, ranging from red (up) to blue
(down).
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on W(001).2 Composed of single-q cycloidal spin spirals, the
configuration shown in Fig. 6 does not have a net magnetic
moment.

D. Fe4/Ir(001)

In the following, for the case of four monolayers of Fe,
the Fe layers are going to be indexed from the substrate
to the surface, so that layer 1 is closest to the Ir substrate
and layer 4 is the surface layer. Summarizing the calculated
interactions, the interlayer isotropic Heisenberg couplings are
strong and FM, with increasing magnitude toward layers closer
to the surface. Interestingly, the couplings between intralayer
first nearest neighbors are mostly weakly antiferromagnetic,
only the two layers closest to the substrate show couplings
of considerable magnitude, above 1 mRy in absolute value.
The corrections to the Heisenberg spin model are weak. Only
the first NN intralayer DM vectors in layer 1 are larger than
0.1 mRy, and the strongest biquadratic couplings are around
0.07 mRy. Based on these features, it is probable that the
magnetic behavior is dominated by isotropic couplings.

The J (�q) surface for Fe4/Ir(001) shown in Fig. 7 has its
maximum in the � point, anticipating FM arrangement. If the
ground state is indeed FM, it is worth looking at the mean-
field estimate for the Curie temperature. The maximum of the
surface with 10.89 mRy corresponds to a mean-field estimate
of TC = 573 K. As mean-field approximations overestimate
the stability of the ordered phases due to neglected fluctuations,
the actual critical temperature is surely lower than this value.
Still, it is possible that at room temperature the system is in
the ordered phase.

The spin dynamics simulations revealed that the ground
state is more complicated than what the mean-field approach
predicts. The simulated system converged into a complex spin
structure regardless of the presence of biquadratic coupling
terms. In each layer the spins formed a cycloidal spiral of �q =
(0.41,0.41) π

a2d
rotating in a vertical plane, but with an additional

q
x
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2d
)

q y/(
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FIG. 7. (Color online) J (�q) surface for Fe4/Ir(001). The color
coding in units of mRy is shown on the right.

TABLE II. Layer-resolved averaged magnetizations, 〈�ei〉, and
atomic magnetic moments in a given domain of Fe4/Ir(001) con-
taining 1178 spins.

〈�ei〉 Magnetic moment [μB]

layer 1 (0.26,0.26,0.01) 1.98
layer 2 (0.37,0.37,0.01) 2.02
layer 3 (0.51,0.53,0.00) 1.60
layer 4 (0.54,0.57,0.00) 2.71

in-plane FM modulation leading to nonzero net magnetization,
〈�ei〉 �= 0. While the wave vector of the spiral is the same
within every layer due to the strong interlayer coupling,
the magnitude of the FM Fourier component increases with
distance from the substrate. For a quantitative comparison
of the net magnetizations, the layer-averaged magnetizations
calculated from a homogeneous domain containing 1178 spins
are presented in Table II. The average magnetization, 〈�ei〉, is
clearly in-plane and monotonically increasing in magnitude
toward the surface where it reaches a value larger than 0.7.
Considering the actual size of each magnetic moment, also
shown in Table II, the total average magnetic moment of the
system is 1.27μB.

In contrast to bulk bcc Fe, the net magnetization points
along the (110) direction, i.e., toward intralayer second-nearest
neighbors, but it is indeed in-plane. Possibly in even thicker
films we would see FM order with easy axis along the (100)
direction, as was found experimentally.

IV. CONCLUSIONS

We used the recently developed SCE-RDLM method to
obtain spin Hamiltonians from ab initio calculations, going be-
yond the anisotropic Heisenberg model by including isotropic
biquadratic interaction terms. The obtained interaction param-
eters allow for a detailed investigation of the magnetic ground
state via a mean-field approach and atomistic spin dynamics
simulations. We presented results for Fe thin films on the
(001) surface of a semi-infinite Ir substrate. For the case of
an Fe monolayer, we found that layer relaxations drastically
rearrange the interaction landscape, leading to the appearance
of complex noncollinear spin structures. Relativistic correc-
tions, in particular, Dzyaloshinskii-Moriya interactions, need
to be taken into account as anisotropic couplings largely affect
the ground state. Spin dynamics simulations also revealed
that including biquadratic interactions to the spin model
significantly alters the ground-state spin configuration by
favoring a more collinear state. This serves as an instruc-
tive warning that in some systems the usual Heisenberg
model might give an insufficient description of magnetic
properties.

For thicker films of two and four monolayers, we found
that biquadratic couplings are irrelevant in determining the
ground-state spin configuration due to the large magnitude
of the Heisenberg interaction. While the bilayer system still
produces a single-q spin spiral as ground state due to the DM
interaction, in the quadrilayer system there is a nonzero net
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magnetization superimposed on a cycloidal spin structure. This
finding may be consistent with experimental results showing
a ferromagnetic signal in MOKE measurements above four
monolayers of Fe deposited on Ir(001).
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by the New Széchenyi Plan of Hungary (Project ID: TÁMOP-
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APPENDIX: MEAN-FIELD PARAMAGNETIC SPIN
SUSCEPTIBILITY

For a system of spins {�e} governed by the grand potential
�({�e}), the best variational mean-field trial Hamiltonian
�0({�e}) = −∑

i
�hi �ei , i.e., the one that minimizes the free

energy is given by

�hi = − 3

4π

∫
d2ei �ei〈�0〉0

�ei
, (A1)

where the angle brackets now denote thermodynamic aver-
aging with respect to the mean-field probability distribution
P0({�ei}) = exp[−β�0({�ei})]/Z0, Z0 being the corresponding
canonical partition function.

For our spin model extended with an inhomogeneous
external field,

�({�e}) = �0 +
N∑

i=1

�ei Ki �ei − 1

2

N∑
i,j = 1
(i �= j )

�ei Jij �ej

− 1

2

∑
i,j = 1
(i �= j )

Bij (�ei · �ej )2 −
N∑

i=1

�hext
i · �ei, (A2)

the Weiss field reads as

�hi = �hMF
i + �hext

i , (A3)

where the molecular field induced by the interaction takes on
the familiar mean-field form,

�hMF
i =

∑
j (�=i)

Jij �mj, (A4)

�mj = 〈�ej 〉0 being the average magnetization at site j . Note that
neither the on-site anisotropy nor the biquadratic couplings
contribute to the Weiss field.

The spin susceptibility, defined as χ
αβ

ij = ∂mα
i /∂h

ext,β
j may

be related to the susceptibility of the noninteracting spin
system χ

0,αβ

ij = δij ∂mα
i /∂h

β

i as

χ ij = χ0
ij +

∑
k �=l

χ0
ikJklχ lj . (A5)

For layered systems with only two-dimensional translation
invariance, we may separate site indices according to a layer
index and an in-plane index:

χ IJ,ij = χ0
IJ,ij +

∑
K,L,k,l

(K,k) �= (L,l)

χ0
IK,ik JKL,klχLJ,lj , (A6)

where capital indices denote layers. Due to in-plane translation
invariance, we may introduce the two-dimensional Fourier
transform of the quantities, for instance,

χ IJ (�q) =
∑

�Ri

χ IJ,i0e
−ı �q �Ri , (A7)

which might be thought of as blocks of matrices in layer and
Cartesian space,

[χ̂(�q)]IJ = χ IJ (�q). (A8)

Using this notation we may easily invert Eq. (A6) and arrive
at

χ̂ (�q) = (̂I − χ̂ 0̂J(�q))−1χ̂0, (A9)

indicating an enhancement of the spin susceptibility due to the
Heisenberg interaction. Note that χ̂0 is independent of �q since
χ0 is site diagonal. In the paramagnetic limit, this expression
simplifies to

χ̂(�q) = [3kBT Î − Ĵ(�q)]−1. (A10)

Annealing the system from the paramagnetic phase there will
be a temperature, Tord, where χ̂ (�q) becomes singular, indicat-
ing that the paramagnetic phase is unstable to the formation
of some magnetically ordered state at that temperature. This
transition temperature Tord is given by the condition

Tord = 1

3kB

max
�q

{eigenvalues of Ĵ(�q)}

= 1

3kB

max
�q

J (�q), (A11)

and the corresponding �q where this happens gives the charac-
teristic wave vector of the ordered phase (where the �q vectors
are sought for in the two-dimensional BZ). In Eq. (A11), we
introduced the notation J (�q) for the maximal eigenvalue of
Ĵ(�q) at a given wave vector. We may gain valuable insight
regarding magnetic ordering in the system by plotting this
scalar function against the points of the BZ.
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P. Weinberger, Phys. Rev. B 52, 8807 (1995).

23D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
24J. Zabloudil, R. Hammerling, L. Szunyogh, and P. Weinberger,

Electron Scattering in Solid Matter, Springer Series in Solid-State
Sciences, Vol. 147 (Springer, Heidelberg, 2005).

25V. I. Lebedev and D. N. Laikov, Doklady Mathematics 59, 477
(1999).

26H. Ebert, H. Freyer, A. Vernes, and G.-Y. Guo, Phys. Rev. B 53,
7721 (1996).

27S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200
(1980).

224413-9

http://dx.doi.org/10.1038/nature05802
http://dx.doi.org/10.1103/PhysRevLett.101.027201
http://dx.doi.org/10.1016/j.physb.2007.08.060
http://dx.doi.org/10.1080/14786430802389213
http://dx.doi.org/10.1016/j.jmmm.2007.04.003
http://dx.doi.org/10.1103/PhysRevB.79.094411
http://dx.doi.org/10.1103/PhysRevB.82.180404
http://dx.doi.org/10.1038/nphys2045
http://dx.doi.org/10.1038/nphys2045
http://dx.doi.org/10.1103/PhysRevB.83.024401
http://dx.doi.org/10.1103/PhysRevB.68.104436
http://dx.doi.org/10.1103/PhysRevB.68.104436
http://dx.doi.org/10.1103/PhysRevB.80.064405
http://dx.doi.org/10.1103/PhysRevB.80.064405
http://dx.doi.org/10.1103/PhysRevB.76.205418
http://dx.doi.org/10.1103/PhysRevB.54.1019
http://dx.doi.org/10.1088/0305-4608/15/6/018
http://dx.doi.org/10.1016/0022-3697(58)90076-3
http://dx.doi.org/10.1103/PhysRev.120.91
http://dx.doi.org/10.1103/PhysRevB.69.104404
http://dx.doi.org/10.1103/PhysRevB.72.212405
http://dx.doi.org/10.1103/PhysRevLett.93.257204
http://dx.doi.org/10.1103/PhysRevLett.93.257204
http://dx.doi.org/10.1103/PhysRevB.74.144411
http://dx.doi.org/10.1103/PhysRevB.49.2721
http://dx.doi.org/10.1103/PhysRevB.49.2721
http://dx.doi.org/10.1103/PhysRevB.52.8807
http://dx.doi.org/10.1103/PhysRevLett.45.566
http://dx.doi.org/10.1103/PhysRevB.53.7721
http://dx.doi.org/10.1103/PhysRevB.53.7721
http://dx.doi.org/10.1139/p80-159
http://dx.doi.org/10.1139/p80-159

