Simulations in Statistical Physics Course for MSc physics students

Janos Török

Department of Theoretical Physics

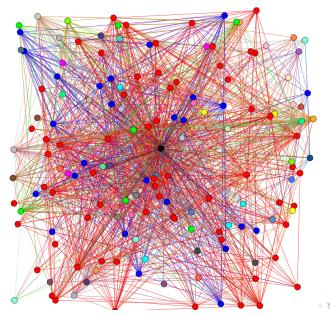
December 2, 2014

Clustering, modularity, community detection

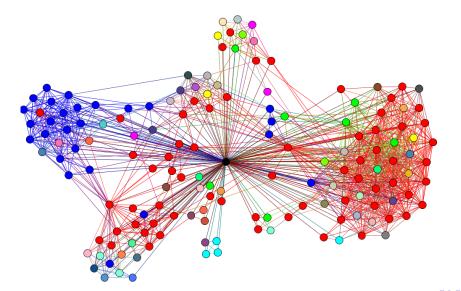
Patterns in comlpex network

- Natural networks are not homogeneous
- ► There are natural groups
- ► These groups are more densely connected internally then externally
- Nodes in groups are more similar
- Exact mathematical definition is lacking
- These groups are called communities
- Clustering: group similar items together

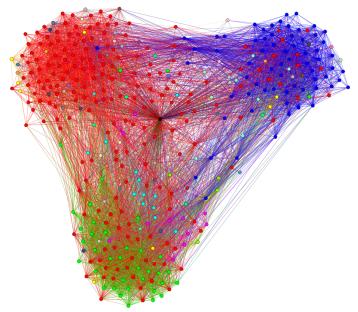
Egocentric network on iwiw



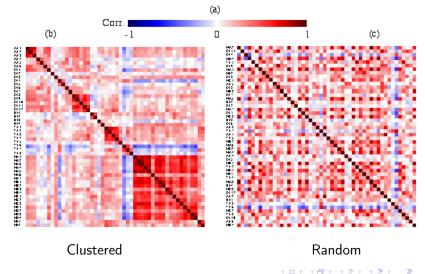
Egocentric network on iwiw



Egocentric network on iwiw

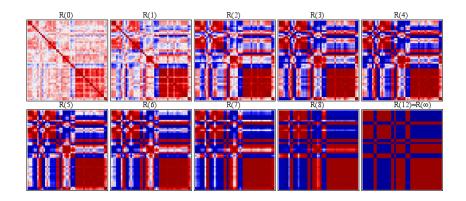


Clustering example: Correlation between 50 symptoms

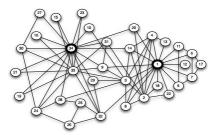


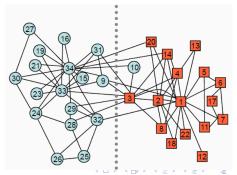
Clustering example: Correlation between 50 symptoms

Community detection



Zachary karate club





Cluster, Community definition:

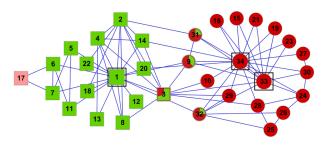
- Group which is more connected to itself than to the rest
- Group of items which are more similar to each other than to the rest of the system.

Communities, Partioning:

- Strict partitioning clustering: each object belongs to exactly one cluster
- Overlapping clustering: each objact may belong to more clusters
- Hierarchical clustering: objects that belong to a child cluster also belong to the parent cluster
- Outliers: which do not conform to an expected pattern

Communities, Partitioning

- Strict partitioning clustering: each object belongs to exactly one cluster
- Overlapping clustering: each objact may belong to more clusters
- Hierarchical clustering: objects that belong to a child cluster also belong to the parent cluster
- Outliers: which do not conform to an expected pattern



Communities, Partitioning, definitions:

- ► Local:
 - ► (Strong) Each node has more neighbors inside than outside
 - (Weak) Total degree within the community is larger than the total degree out of it.
 - Modularity by local definition (above)
 - ► Clique-percolation
- Global: The community structure found is optimal in a global sense
 - Modularity
 - k-means clustering
 - Agglomerative hierarchical clustering

Communities, Partitioning, definitions:

- Hundreds of different algorithms, definitions
- ► Starting point: *adjacency matrix* A_{ij} , the strength of the link between nodes i and j
- Nodes as vectors (e.g. rows of adjacency matrix)
- ▶ Metric between nodes: ||a b||:
 - Euclidean distance: $||a-b||_2 = \sqrt{\sum_i (a_i b_i)^2}$
 - Maximum distance: $||a b||_{\infty} = \max_{i} |a_i b_i|$
 - ► Cosine similarity: $||a b||_c = \frac{a \cdot b}{||a|| ||b||}$
 - Hamming distance: number of different coordinates

Modularity

Global method

- e_{ii} percentage of edges in module (cluster) i probability edge is in module i
- ▶ a_i percentage of edges with at least 1 end in module i probability a random edge would fall into module i

Modularity

CMSC 858L

► Modularity is

$$Q = \sum_{i=1}^k (e_{ii} - a_i^2)^{-1/2} e^{-k(a_i + a_i)} e^{-k(a_i + a_i)} e^{-k(a_i + a_i)}$$

Modularity algorithm

▶ Rewrite *Q*:

$$Q = \frac{1}{2m} \sum_{\{i,j\}} \left[A_{ij} - \frac{k_i k_j}{2m} \right]$$

where $\{i,j\}$ are pairs in the same module. $2m = \sum_i k_i$

- Only two modules
- ▶ $s_i = \pm 1$: 1 if node i is in module 1 -1 otherwise

$$Q = \frac{1}{4m} \sum_{\{i,j\}} \left[A_{ij} - \frac{k_i k_j}{2m} \right] (s_i s_j + 1)$$

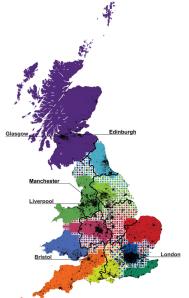
- ▶ +1 is a constat can be omitted
- ▶ Change the vector s_i to maximize Q

Modularity algorithm

$$Q = \frac{1}{4m} \sum_{\{i,j\}} \left[A_{ij} - \frac{k_i k_j}{2m} \right] s_i s_j$$

- ▶ Try to find ± 1 vector s_i that maximizes the modularity.
- Start with two groups
- ▶ Then split one of the two groups using the same technique
- Very similar to spin glass Hamiltonian
- Generally a np-complete problem, we can use the same techniques.
- Often steepest descent is used, (greedy method): change the site that would increase the modularity the most.

Modularity: human interactions between cities



Problems with modularity

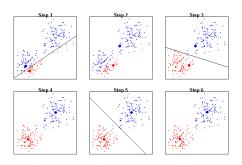
Resolution

$$Q = \frac{1}{4m} \sum_{\{i,j\}} \left[A_{ij} - \frac{k_i k_j}{2m} \right] s_i s_j$$

- ▶ On large networks normalization factor *m* can be very large
- (It relies on random network model)
- ► The expected edge between modules decreases and drops below 1
- ► A single link is a strong connection.
- Small modules will not be found

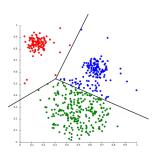
k-means clustering

- Cut the system into exactly k parts
- Let μ_i be the mean of each cluster (using a metric)
- ▶ The cluster i is the set of points which are closer to μ_i than to any other μ_j
- ▶ The result is a partitioning of the data space into Voronoi cells



k-means clustering, standard algorithm:

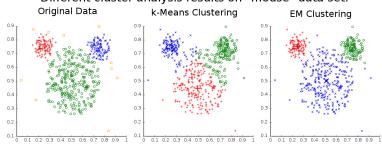
- Define a norm between nodes
- Give initial positions of the means m_i
- ► Assignment step: Assign each node to cluster whoose mean m_i is the closest to node.
- ▶ Update step: Calculate the new means of the clusters
- Go to Assignment step.



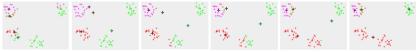
k-means clustering, problems:

- k has to fixed beforhand
- Fevorizes equal sized clusters:

Different cluster analysis results on "mouse" data set:



Very sensitive on initial conditions:



No guarantee that it converges

Hierarchical clustering

- 1. Define a norm between nodes d(a, b)
- 2. At the beginning each node is a separate cluster
- 3. Merge the two closest cluster into one
- 4. Repeat 3.

Norm between clusters ||A - B||

Maximum or complete linkage clustering:

$$\max\{d(a,b): a \in A, b \in B\}$$

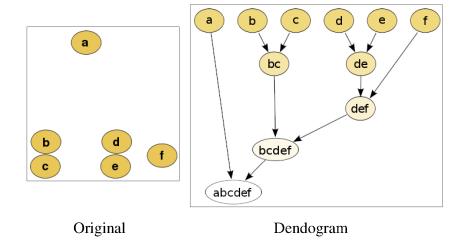
Minimum or single-linkage clustering:

$$\min\{d(a,b): a \in A, b \in B\}$$

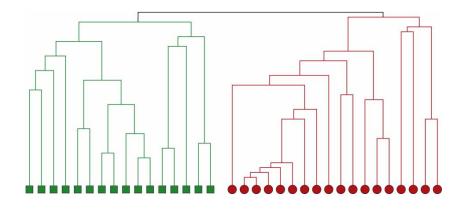
Mean or average linkage clustering:

$$\frac{1}{||A||\,||B||} \sum_{a \in A} \sum_{b \in B} d(a,b)$$

Hierarchical clustering



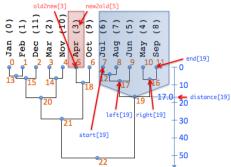
Dendograph of the Zachary karate club



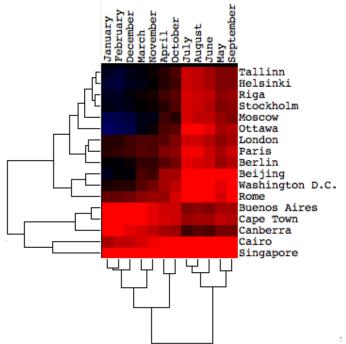
Example: Temperatures in capitals

```
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Tallinn
                     -5
                                  10
                                      13
                                          16
                                              15
                         -1
                                                   10
                                                                -2
                             13
                                               25
Beijing
                     и
                         6
                                  20
                                      24
                                          26
                                                   20
                                                      13
                                                                -1
Berlin
                     -1
                                  12
                                      16
                                          18
                                              17
                                                   14
                                                                1
Buenos Aires
                 23
                     22
                         20
                             16
                                 13
                                      10
                                                   13
                                          10
                                               11
                                                       16
                                                           18
                                                               22
Cairo
                 13
                    15
                         17
                             21
                                  25
                                      27
                                          28
                                              27
                                                   26
                                                       23
                                                           19
                                                               15
                 2Й
                     20
                         17
                             13
                                  9
                                          5
                                                   9
                                                       12
                                                           15
                                                               18
Canherra
Cape Town
                 21
                     21
                         20
                             17
                                 15
                                      13
                                          12
                                               13
                                                   14
                                                           18
                                                               20
                 -5
                         -2
Helsinki
                     -6
                                  10
                                     13
                                          16
                                              15
                                                   10
                                                       5
                                                           0
                                                               -3
London
                 3
                     3
                         6
                                  11
                                      14
                                          16
                                               16
                                                   13
                                                               5
Moscow
                     -7
                         -2
                             5
                                  12
                                      15
                                          17
                                               15
                                                   10
                                                                -6
Ottawa
                 -10 -8 -2
                             6
                                  13
                                      18
                                          21
                                               20
                                                   14
                                                                -7
                 3
                     4
                         7
                                 13
                                      16
                                                               5
Paris
                             10
                                          19
                                              19
                                                   16
                                                       11
Riga
                     -3
                         1
                             5
                                  11
                                      15
                                          17
                                               16
                                                   12
                                                                -1
Rome
                8
                     8
                         11
                             12
                                 17
                                      20
                                          23
                                               23
                                                   21
                                                       17
                                                           12
                                                               9
Singapore
                 27
                     27
                         28
                             28
                                  28
                                      28
                                          28
                                               28
                                                   27
                                                           27
                                                                26
Stockholm
                 -2
                     -3
                             3
                                  10
                                          17
                                                                -2
                         и
                                      14
                                               16
                                                   11
Washington D.C. 2
                     3
                             13
                                  18
                                      23
                                          26
                                               25
                                                   21
                                                       15
                                                                3
```

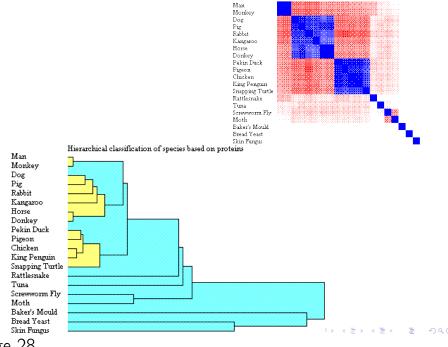
```
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Tallinn
                                                               -2
Beijing
                                                               -1
Berlin
                                 12
                                                               1
Buenos Aires
                                 13
                                      10
                                          10
                                                   13
Cairo
                 13
                             21
                                          28
                                                               15
Canberra
                 20
                     20
                                                       12
                                                           15
                                                               18
Cape Town
                                                           18
                                                               20
Helsinki
                                                               -3
London
                 3
                                 11
                                              16
Moscow
Ottawa
                                 13
Paris
                 3
                                 13
                                          19
                                                               5
Riga
                                                               -1
Rome
                             12
                                 17
                                          23
Singapore
                                 28
                                                               26
Stockholm
                                 10
                                              16
                                                               -2
Washington D.C.
                             13
                                 18
                                          26
                                                               3
```



Euclidean distance



Page 27

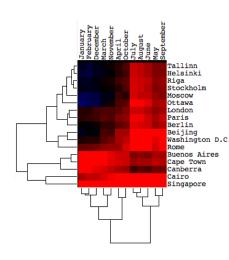


Hierarchical classification of species based on proteins

Page 28

Hierarchical clustering: problems

- Advantages
 - Simple
 - ► Fast
 - Number of clusters can be controlled
 - ► Hierarchical relationship
- Disadvantages
 - No a priori cutting level
 - Meaning of clusters unclear
 - Important links may be missed
 - Different result if one item omitted



Ahn method: Hierarchical clustering of edges

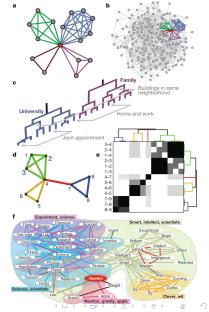
► Partition density:

$$D_c = \frac{m_c - (n_c - 1)}{n(n_c - 1)/2 - (n_c - 1)}$$

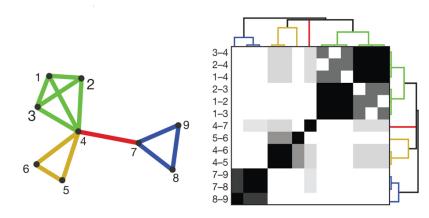
 m_c # of links in subset c n_c # of nodes in subset c

$$D = \frac{2}{M} \sum m_c D_c$$

- Cutting at the max of D
- Overlapping communities



Ahn method: Example



LFK method

► Try to use definition: more links in than out in cluster

$$f_G = \frac{k_{in}^G}{(k_{in}^G + k_{out}^G)^\alpha}$$

- Try tomaximize fitness:
 - ► Add node if it increases fitness
 - Check all others whether they decrease it
- Algorithm:
 - 1. Loop for all neighboring nodes of G not included in G
 - 2. The neighbor with the largest fitness is added to G, yielding a larger subgraph G'
 - 3. The fitness of each node of G' is recalculated
 - 4. If a node turns out to have negative fitness change, it is removed from G', yielding a new subgraph G''
 - 5. if 4 occurs go to 3 than repeat from 1 with G''

¹Andrea Lancichinetti, Santo Fortunato and János Kertész New J. Phys. 11 033015, 2009.

LFK method

 $ightharpoonup \alpha$ resolution factor (# modules)/10 1.6 fitness 1.2 8.0 0.4 1.5 α

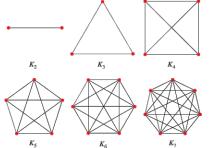
Long plateaus indicate stable structure, (as e.g. hierarchical)

LFK method: problems

- Advantages
 - Resolution can be controlled
 - Close to most trivial definition
 - Can be extended to overlapping clusters
- Disadvantages
 - Code runs for ages
 - Heuristic cutting

Clique percolation

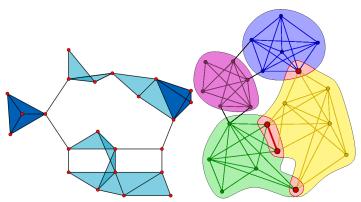
- ► Motication: clusters are formed with at least triangles
- ► Can be generalized to any k-clique



• k = 2 normal percolation

Clique percolation

- ▶ It will definitely lead to overlapping communities, but overlap is limited to k-1 nodes
- ▶ k-clusters are included in k-1 clusters



Clique percolation

- Algorithm
 - Similar to normal percolation on networks but with multiple loops
- Advantages
 - Different level of clusters
 - Clusters are generally relevant
 - No heuristics
- Disadvantages
 - Running time cannot be guessed (finding the maximal clique is an np-complete problem)
 - Code may run for ages