Simulations in Statistical Physics Course for MSc physics students

Janos Török

Department of Theoretical Physics

October 28, 2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへの

Metropolis algorithm

(Metropoli-Rosenbluth-Rosenbluth-Teller-Teller=MR²T² algorithm)

- Sequence of configurations using a Markov chain
- Configuration is generated from the previous one
- Transition probability: equilibrium probability
- Detailed balance:

$$P(x)W(x \rightarrow x') = P(x')W(x' \rightarrow x)$$

Rewritten:

Page 2

$$rac{W(x
ightarrow x')}{W(x'
ightarrow x)} = rac{P(x')}{P(x)} = e^{-eta \Delta E}$$

Only the ration of transition probabilities are fixed

Metropolis algorithm

(Metropoli-Rosenbluth-Rosenbluth-Teller-Teller=MR²T² algorithm)

$$rac{W(x
ightarrow x')}{W(x'
ightarrow x)} = rac{P(x')}{P(x)} = e^{-eta \Delta E}$$

Metropolis:

$$W(x
ightarrow x') = egin{cases} e^{-eta \Delta E} & ext{if} \Delta E > 0 \ 1 & ext{otherwise} \end{cases}$$

Symmetric:

$$W(x
ightarrow x') = rac{e^{-eta \Delta E}}{1 + e^{-eta \Delta E}}$$

Metropolis algorithm

Recipes:

- Choose an elementary step $x \to x'$
- Calculate ΔE
- Calculate $W(x \rightarrow x')$
- Generate random number $r \in [0, 1]$
- If $r < W(x \rightarrow x')$ then new state is x'; otherwise it remains x
- Increase time
- Measure what you want
- Restart

Metropolis algorithm, proposal probability

Transition probability:

$$W(x \to x') = g(x \to x')A(x \to x')$$

• $g(x \rightarrow x')$: proposal probability

- Generally uniform
- If different interactions are present then it must be incorporated
- $A(x \rightarrow x')$: acceptance probability
 - Metropolis
 - Symmetric

Metropolis, proof

State flow
Let
$$E > E'$$
:
• $x \to x'$
• $p(x)g(x \to x')A(x \to x') = P(x)$
• $x' \to x$

$$P(x')g(x' \to x)A(x' \to x) = P(x')e^{-\beta\Delta E}$$

In equilibrium they are equal:

$$\frac{P(x)}{P(x')} = e^{\beta \Delta E}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

What we wanted.

Do we need optimization?

- Correlation lenth ξ
- Characteristic time au_{char}
- Dynamical exponent z

$$au_{\rm char} \propto \xi^z$$

- For 2d Ising model $z \simeq 2.17$
- Simulation time:

$$t_{
m CPU} \sim L^{d+z}$$

We need more effective algorithms!

Multri-spin algorithm for 2d Ising model

History...

- Operations:
 - Check if neighbor is parallel: XOR
 - sum of antiparallel spins: sum of previous XOR

►	Result:	discrete	energy	difference	can	be	0,	1,	2,	3,	4
---	---------	----------	--------	------------	-----	----	----	----	----	----	---

Metropolis	0	1	2	3	4
$\Delta E/J$	8	4	0	4	8
$W(x \rightarrow x')$	$\exp(-8\beta)$	$\exp(-4\beta)$	1	1	1

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- (of course $W(x \rightarrow x')$ in array)
- 3 bit is enough to store result in 2d and 3d
- Use every fourth bit to store a spin.

Multri-spin algorithm for 2d Ising model

Historical solution

- Every fourth bit in the integer is a spin
- We get sizeof(int)/4 bits at once
- Special bit order

NxN	8 bit ir	nteger	L=N/2			
1	L+1	2	L+2	3	L+3	
N+1	N+L+1	N+2	N+L+2	N+3	N+L+3	
2N+1	2N+L+1	2N+2	2N+L+2	2N+3	N+L+3	

Multri-spin algorithm for 2d Ising model

Historical solution

- Every fourth bit in the integer is a spin
- We get sizeof(int)/4 bits at once
- Special bit order
- Nowdays may even be slower as array operations are fast
- Use it for ensemble average
 - One member of the array contains the spin of one position
 - Multiple simulation instances
 - With Metropolis algorithm few random numbers are needed (at high T)

▶ Does not really matter only factors can be won, $t_{\rm CPU} \sim L^{d+z}$ still holds

Cluster algorithm

- Flip more spins together. How?
- The solution based on an old relationship between the percolation and the Potts model – is that we consider the spin configuration as a correlated site percolation problem
- Ising cluster: a percolating cluster of parallel spins
- ► Ising droplets: a percolating subset of an Ising cluster $p_B = 1 \exp(-2\beta J)$

Ising "droplets"

Ising configuration Page 11

Swendsen-Wang algorithm

- Take an Ising configuration
- With probability p_B = 1 − exp(−2βJ) make connection between parallel spins

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Identify the droplets by Hoshen-Kopelman algorithm
- Flip each droplet with probability: 1/2 (h = 0)
- Repeat it over

Wolff algorithm

- 1. Add a random spin to a list of active spins
- 2. Take a spin from the active list
- 3. Add each parallel neighboring (not yet visited) spin with probability $p_B = 1 \exp(-2\beta J)$ to the list of active spins
- 4. If list of active spins is not empty go to 2.
- 5. Flip all active spins

The new configuration The droplet contour is still shown, though the bonds are eliminated after flipping

Wolff algorithm proof

Detailed balance:

$$P^{eq}(x)W(x \to x') = P^{eq}(x')W(x' \to x)$$

Metropolis:

$$W(x \rightarrow x') = \min\left\{1, \frac{P^{eq}(x)}{P^{eq}(x')}\right\}$$

• Split W into acceptance A and proposal g probability

$$A(x \to x') = \min\left\{1, \frac{P^{eq}(x)g(x' \to x)}{P^{eq}(x')g(x \to x')}\right\}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Wolff algorithm proof

▶ On the boundary: *n*_{same} spins parallel and *n*_{diff} antiparallel.

$$\begin{split} \mathcal{A}(x \to x') &= \min\left\{1, \frac{e^{\beta J(n_{\mathsf{diff}} - n_{\mathsf{same}})}}{e^{\beta J(n_{\mathsf{same}} - n_{\mathsf{diff}})}} \frac{(1 - p_B)^{n_{\mathsf{diff}}}}{(1 - p_B)^{n_{\mathsf{same}}}}\right\} \\ &= \min\left\{1, \frac{e^{-2\beta J n_{\mathsf{same}}}}{e^{-2\beta J n_{\mathsf{diff}}}} \frac{(1 - p_B)^{n_{\mathsf{diff}}}}{(1 - p_B)^{n_{\mathsf{same}}}}\right\} \end{split}$$

э

• It gives: $p_B = 1 - \exp(-2\beta J)$.

Page 16

・ロト ・日・・日・・日・・ うくの

Page 17

・ロト ・日・・日・・日・・日・

Page 18

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Page 19

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Page 20

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Other ensembles

Microcanonical ensemble

- Daemon with bag with tolerance (both directions)
 - Pick a move, and calculate energy change
 - If energy change does not fit into bag reject it
 - Otherwise add energy change to bag
- ▶ In case of conservation the dynamic exponent *z* is larger!

Other ensembles

Conserved order parameter: Kawasaki dynamics

- Elementary step:
 - Exchange up-down spin pairs (can be anywhere) simultaneously
 - Apply Metropolis to net energy change!
 - Diffusive dynamics is more physical: pick neighboring spins

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

▶ In case of conservation the dynamic exponent *z* is larger!

Calculation of the entropy, free energy, etc.

- Equilibrium statistical physics: From F we can calculate everything
- In simulations F and S cannot be measured directly
- F = E TS so one of them is enough (E and T are known)
- Solution:

Calculate the specific heat!

$$C = k_B T^2 \langle (\Delta E)^2 \rangle$$

- The energy fluctuations are measurable
- Since

$$C = T \frac{\partial S}{\partial T}$$

We have

$$S(T) = S(T_0) + \int_{T_0}^{T} \frac{C(T')}{T'} dT'$$

Calculation of the entropy, free energy, etc.

In many cases derivate of the entropy is needed so S(T₀) is not important in

$$S(T) = S(T_0) + \int_{T_0}^T \frac{C(T')}{T'} dT'$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

From third law of thermodynamics: S(T = 0) = 0.

Diffusion

- On normal lattice exactly sovable
- Otherwise e.g. Monte Carlo kinetics. E.g. 1D
 - \blacktriangleright With probability 1/2 \rightarrow go right
 - \blacktriangleright With probability $1/2 \rightarrow$ go left
 - Be careful with boundary conditions

- Can easily be biased
- Can be simulated on spurious lattices, e.g. Parcolation clusters

< ロ > < 同 > < 回 > < 回 > < 回 > <

Diffusion

- Solution for diffusion on finite lattice:
- Count steps in both directions
- The net move is $W = n_+ n_0$
- Use ensemble average

• Plot
$$\langle W^2 \rangle$$
 vs. t

・ロト ・部ト ・ヨト ・ヨト

э

Optimization

- General problem of finding the ground state
- Phase-space:
- Arbitrary number of dimensions
- Methods:
 - Steepest Descent
 - Stimulated Annealing
 - Genetic algorithm

Gradient based optimization

Page 28

• Given
$$f(\mathbf{x})$$
, with $\mathbf{x} = \{x_1, x_2, \dots, x_n\}$

• Gradient $\nabla f(\mathbf{x}) \equiv \mathbf{g}(\mathbf{x}) = \{\partial_1 f, \partial_2 f, \dots \partial_n f\}$

Second order partial derivatives: square symmetric matrix called the *Hessian matrix*:

$$\nabla^2 f(\mathbf{x}) \equiv H(\mathbf{x}) \equiv \begin{pmatrix} \partial_1 \partial_1 f & \dots & \partial_1 \partial_n f \\ \vdots & \ddots & \vdots \\ \partial_1 \partial_n f & \dots & \partial_n \partial_n f \end{pmatrix}$$

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへの

General Gradient Algorithm

- 1. Test for convergence
- 2. Compute a search direction
- 3. Compute a step length
- 4. Update x

Steepest descent algorithm

1. Start from \mathbf{x}_0

- 2. Compute $\mathbf{g}(\mathbf{x}_k) \equiv \nabla f(\mathbf{x}_k)$. If $||\mathbf{g}(\mathbf{x}_k)|| \leq \varepsilon_g$ then stop, otherwise, compute normalized search direction $\mathbf{p}_k = -\mathbf{g}(\mathbf{x}_k)/||\mathbf{g}(\mathbf{x}_k)||$
- 3. Compute α_k such that $f(\mathbf{x}_k + \alpha \mathbf{p}_k)$ is minimized
- 4. New point: $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha \mathbf{p}_k$
- 5. Test for $|f(\mathbf{x}_{k+1} f(\mathbf{x}_k))| \le \varepsilon_a + \varepsilon_r |f(\mathbf{x}_k)|$ and stop if fulfilled in two successive iterations, otherwise go to 2.

Conjugate Gradient Method

- 1. Start from x_0
- 2. Compute $\mathbf{g}(\mathbf{x}_k) \equiv \nabla f(\mathbf{x}_k)$. If $||\mathbf{g}(\mathbf{x}_k)|| \leq \varepsilon_g$ then stop, otherwise Go to 5
- 3. Compute $\mathbf{g}(\mathbf{x}_k) \equiv \nabla f(\mathbf{x}_k)$. If $||\mathbf{g}(\mathbf{x}_k)|| \leq \varepsilon_g$ then stop, otherwise continue
- 4. Compute the new conjugate gradient direction $\mathbf{p}_k = -\mathbf{g}_k + \beta_k \mathbf{p}_{k-1}$, where

$$\beta = \left(\frac{||\mathbf{g}_k||}{||\mathbf{g}_{k-1}||}\right)^2$$

- 5. Compute α_k such that $f(\mathbf{x}_k + \alpha \mathbf{p}_k)$ is minimized
- 6. New point: $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha \mathbf{p}_k$
- 7. Test for $|f(\mathbf{x}_{k+1} f(\mathbf{x}_k))| \le \varepsilon_a + \varepsilon_r |f(\mathbf{x}_k)|$ and stop if fulfilled in two successive iterations, otherwise go to 3.

(日) (母) (日) (日) (日) (日)

Modified Newton's method

Second order method

- 1. Start from \mathbf{x}_0
- 2. Compute $\mathbf{g}(\mathbf{x}_k) \equiv \nabla f(\mathbf{x}_k)$. If $||\mathbf{g}(\mathbf{x}_k)|| \leq \varepsilon_g$ then stop, otherwise, continue
- 3. Compute $H(\mathbf{x}_k) \equiv \nabla^2 f(\mathbf{x}_k)$ and the search direction $\mathbf{p}_k = -H^{-1}\mathbf{g}_k$

- 4. Compute α_k such that $f(\mathbf{x}_k + \alpha \mathbf{p}_k)$ is minimized
- 5. New point: $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha \mathbf{p}_k$
- 6. Go to 2.

Metastability

- > At first order transitions the correlation length remains finite.
- The mechanism of the first order transition is usually nucleation, which is related to metastability.
- Examples can be observed at hysteresis or undercooling, overheating, over-compessing etc.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Nucleation

- There is a competition between the bulk free energy of the droplet and its surface energy
- There is a critical nucleus size above which the transition is very rapid.
- However, such a critical nucleus has to be created by spontaneous fluctuations – which takes (sometimes enormously long) time.

Glassy behavior, frustration

Model glass: spin-glass:

$$H = -\frac{1}{2} \sum_{\langle i,j \rangle} J_{ij} S_i S_j$$

 where J_{ij} are random quenched variables with 0 mean (e.g. ±J with probability half)

Rugged energy landscape.

Rugged energy landscape

Typical example NP-complete problems:

- Traveling salesman
- Graph partitioning
- Spin-glass
- No full optimization is possible (do we need it?)
- Very good minimas can be obtained by optimization

- Simulated annealing
- Genetic algorithm

Simulated annealing

- Cool down the system slowly
- Warm up and down if needed, if the system quenched into a local minimum

- One needs a Hamiltonian and an elementary move
- Traveling salesman
 - Path length
 - Exchange two cities in the path
- Use Metropolis simulated annealing. ($T \sim$ alcohol)

Demo movie

Genetic algorithm

- Learn from nature
- Let the fittest to survive
 - Fitness function, e.g. energy, length, etc.
- Combine different strategies
- State is represented by a vector (genetic code or genotype)
 - Phasespace, city order, neural network parameters, etc.
- Offsprings have two parents with shared genetic code
- Mutations
- Those who are not fit enough die out
 - Keep the number of agents fixed

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

Genetic algorithm: Reproduction

Two parents and two children

イロト イヨト イヨト イヨト 三日

Genetic algorithm terminology

- Chromosome: Carrier of the genetic representation
- Gene: Smallest units in the chromosome with individual meaning
- Parents: Pair of chromosomes, wich produce offsprings
- Population: Set of chromosomes from which the parents are selected. Its size should be larger than the length of the chromosome
- Selection principle: The way parents are selected (random, elitistic)
- Crossover: Recombination of the genes of the parents by mixing
- Crossover rate: The rate by which crossover takes place (~90%)
- Mutatation: Random change of genes
- ▶ Mutation rate: The rate by which mutation takes place (~1%)

(日) (母) (日) (日) (日) (日)

• Generation: The pool after one sweep.

Genetic algorithm terminology

Page 41

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで