Simulations in Statistical Physics
 Course for MSc physics students

Janos Török
Department of Theoretical Physics

October 28, 2014

Page 1

Metropolis algorithm

(Metropoli-Rosenbluth-Rosenbluth-Teller-Teller $=\mathrm{MR}^{2} \mathrm{~T}^{2}$ algorithm)

- Sequence of configurations using a Markov chain
- Configuration is generated from the previous one
- Transition probability: equilibrium probability
- Detailed balance:

$$
P(x) W\left(x \rightarrow x^{\prime}\right)=P\left(x^{\prime}\right) W\left(x^{\prime} \rightarrow x\right)
$$

- Rewritten:

$$
\frac{W\left(x \rightarrow x^{\prime}\right)}{W\left(x^{\prime} \rightarrow x\right)}=\frac{P\left(x^{\prime}\right)}{P(x)}=e^{-\beta \Delta E}
$$

- Only the ration of transition probabilities are fixed

Metropolis algorithm

(Metropoli-Rosenbluth-Rosenbluth-Teller-Teller $=\mathrm{MR}^{2} \mathrm{~T}^{2}$ algorithm)

$$
\frac{W\left(x \rightarrow x^{\prime}\right)}{W\left(x^{\prime} \rightarrow x\right)}=\frac{P\left(x^{\prime}\right)}{P(x)}=e^{-\beta \Delta E}
$$

- Metropolis:

$$
W\left(x \rightarrow x^{\prime}\right)= \begin{cases}e^{-\beta \Delta E} & \text { if } \Delta E>0 \\ 1 & \text { otherwise }\end{cases}
$$

- Symmetric:

$$
W\left(x \rightarrow x^{\prime}\right)=\frac{e^{-\beta \Delta E}}{1+e^{-\beta \Delta E}}
$$

Metropolis algorithm

Recipes:

- Choose an elementary step $x \rightarrow x^{\prime}$
- Calculate ΔE
- Calculate $W\left(x \rightarrow x^{\prime}\right)$
- Generate random number $r \in[0,1]$
- If $r<W\left(x \rightarrow x^{\prime}\right)$ then new state is x^{\prime}; otherwise it remains x
- Increase time
- Measure what you want
- Restart

Metropolis algorithm, proposal probability

Transition probability:

$$
W\left(x \rightarrow x^{\prime}\right)=g\left(x \rightarrow x^{\prime}\right) A\left(x \rightarrow x^{\prime}\right)
$$

- $g\left(x \rightarrow x^{\prime}\right)$: proposal probability
- Generally uniform
- If different interactions are present then it must be incorporated
- $A\left(x \rightarrow x^{\prime}\right)$: acceptance probability
- Metropolis
- Symmetric

Metropolis, proof

State flow
Let $E>E^{\prime}$:

- $x \rightarrow x^{\prime}$

$$
P(x) g\left(x \rightarrow x^{\prime}\right) A\left(x \rightarrow x^{\prime}\right)=P(x)
$$

- $x^{\prime} \rightarrow x$

$$
P\left(x^{\prime}\right) g\left(x^{\prime} \rightarrow x\right) A\left(x^{\prime} \rightarrow x\right)=P\left(x^{\prime}\right) e^{-\beta \Delta E}
$$

- In equilibrium they are equal:

$$
\frac{P(x)}{P\left(x^{\prime}\right)}=e^{\beta \Delta E}
$$

- What we wanted.

Do we need optimization?

- Correlation lenth ξ
- Characteristic time $\tau_{\text {char }}$
- Dynamical exponent z

$$
\tau_{\text {char }} \propto \xi^{z}
$$

- For 2d Ising model $z \simeq 2.17$
- Simulation time:

$$
t_{\mathrm{CPU}} \sim L^{d+z}
$$

We need more effective algorithms!

Multri-spin algorithm for 2d Ising model

History...

- Operations:
- Check if neighbor is parallel: XOR
- sum of antiparallel spins: sum of previous XOR
- Result: discrete energy difference can be $0,1,2,3,4$

Metropolis	0	1	2	3	4
$\Delta E / J$	8	4	0	4	8
$W\left(x \rightarrow x^{\prime}\right)$	$\exp (-8 \beta)$	$\exp (-4 \beta)$	1	1	1

- (of course $W\left(x \rightarrow x^{\prime}\right)$ in array)
- 3 bit is enough to store result in 2d and 3d
- Use every fourth bit to store a spin.

Multri-spin algorithm for 2d Ising model

- Historical solution
- Every fourth bit in the integer is a spin
- We get sizeof(int)/4 bits at once
- Special bit order

NxN	8 bit integer			$\mathrm{L}=\mathrm{N} / 2$	
1	$\mathrm{~L}+1$	2	$\mathrm{~L}+2$	3	$\mathrm{~L}+3$
$\mathrm{~N}+1$	$\mathrm{~N}+\mathrm{L}+1$	$\mathrm{~N}+2$	$\mathrm{~N}+\mathrm{L}+2$	$\mathrm{~N}+3$	$\mathrm{~N}+\mathrm{L}+3$
$2 \mathrm{~N}+1$	$2 \mathrm{~N}+\mathrm{L}+1$	$2 \mathrm{~N}+2$	$2 \mathrm{~N}+\mathrm{L}+2$	$2 \mathrm{~N}+3$	$\mathrm{~N}+\mathrm{L}+3$

Multri-spin algorithm for 2d Ising model

- Historical solution
- Every fourth bit in the integer is a spin
- We get sizeof(int)/4 bits at once
- Special bit order
- Nowdays may even be slower as array operations are fast
- Use it for ensemble average
- One member of the array contains the spin of one position
- Multiple simulation instances
- With Metropolis algorithm few random numbers are needed (at high T)
- Does not really matter only factors can be won, $t_{\mathrm{CPU}} \sim L^{d+z}$ still holds

Cluster algorithm

- Flip more spins together. How?
- The solution - based on an old relationship between the percolation and the Potts model - is that we consider the spin configuration as a correlated site percolation problem
- Ising cluster: a percolating cluster of parallel spins
- Ising droplets: a percolating subset of an Ising cluster

$$
p_{B}=1-\exp (-2 \beta J)
$$

Ising cluster

0		0	0	0	
				0	
					0
	0	0			
		0			
			0	0	

Ising configuration

Ising „droplets"

Page 11

Swendsen-Wang algorithm

- Take an Ising configuration
- With probability $p_{B}=1-\exp (-2 \beta J)$ make connection between parallel spins
- Identify the droplets by Hoshen-Kopelman algorithm
- Flip each droplet with probability: $1 / 2(h=0)$
- Repeat it over

Wolff algorithm

1. Add a random spin to a list of active spins
2. Take a spin from the active list
3. Add each parallel neighboring (not yet visited) spin with probability $p_{B}=1-\exp (-2 \beta J)$ to the list of active spins
4. If list of active spins is not empty go to 2 .
5. Flip all active spins

$$
\begin{aligned}
& \text { The new configuration } \\
& \text { The droplet contour is } \\
& \text { still shown, though the } \\
& \text { bonds are eliminated } \\
& \text { after flipping }
\end{aligned}
$$

Wolff algorithm proof

- Detailed balance:

$$
P^{e q}(x) W\left(x \rightarrow x^{\prime}\right)=P^{e q}\left(x^{\prime}\right) W\left(x^{\prime} \rightarrow x\right)
$$

- Metropolis:

$$
W\left(x \rightarrow x^{\prime}\right)=\min \left\{1, \frac{P^{e q}(x)}{P^{e q}\left(x^{\prime}\right)}\right\}
$$

- Split W into acceptance A and proposal g probability

$$
A\left(x \rightarrow x^{\prime}\right)=\min \left\{1, \frac{P^{e q}(x) g\left(x^{\prime} \rightarrow x\right)}{P^{e q}\left(x^{\prime}\right) g\left(x \rightarrow x^{\prime}\right)}\right\}
$$

Page 14

Wolff algorithm proof

- On the boundary: $n_{\text {same }}$ spins parallel and $n_{\text {diff }}$ antiparallel.

$$
\begin{aligned}
A\left(x \rightarrow x^{\prime}\right) & =\min \left\{1, \frac{e^{\beta J\left(n_{\text {diff }}-n_{\text {same }}\right)}}{e^{\beta J\left(n_{\text {same }}-n_{\text {diff }}\right)}} \frac{\left(1-p_{B}\right)^{n_{\text {diff }}}}{\left(1-p_{B}\right)^{n_{\text {same }}}}\right\} \\
& =\min \left\{1, \frac{e^{-2 \beta J n_{\text {same }}}}{e^{-2 \beta J n_{\text {diff }}}} \frac{\left(1-p_{B}\right)^{n_{\text {diff }}}}{\left(1-p_{B}\right)^{n_{\text {same }}}}\right\}
\end{aligned}
$$

- It gives: $p_{B}=1-\exp (-2 \beta J)$.

Comparison magnetization

Page 20

Other ensembles

Microcanonical ensemble

- Daemon with bag with tolerance (both directions)
- Pick a move, and calculate energy change
- If energy change does not fit into bag reject it
- Otherwise add energy change to bag
- In case of conservation the dynamic exponent z is larger!

Other ensembles

Conserved order parameter: Kawasaki dynamics

- Elementary step:
- Exchange up-down spin pairs (can be anywhere) simultaneously
- Apply Metropolis to net energy change!
- Diffusive dynamics is more physical: pick neighboring spins
- In case of conservation the dynamic exponent z is larger!

Calculation of the entropy, free energy, etc.

- Equilibrium statistical physics: From F we can calculate everything
- In simulations F and S cannot be measured directly
- $F=E-T S$ so one of them is enough (E and T are known)
- Solution:

Calculate the specific heat!

$$
C=k_{B} T^{2}\left\langle(\Delta E)^{2}\right\rangle
$$

- The energy fluctuations are measurable
- Since

$$
C=T \frac{\partial S}{\partial T}
$$

We have

$$
S(T)=S\left(T_{0}\right)+\int_{T_{0}}^{T} \frac{C\left(T^{\prime}\right)}{T^{\prime}} d T^{\prime}
$$

Calculation of the entropy, free energy, etc.

- In many cases derivate of the entropy is needed so $S\left(T_{0}\right)$ is not important in

$$
S(T)=S\left(T_{0}\right)+\int_{T_{0}}^{T} \frac{C\left(T^{\prime}\right)}{T^{\prime}} d T^{\prime}
$$

- From third law of thermodynamics: $S(T=0)=0$.

Diffusion

- On normal lattice exactly sovable
- Otherwise e.g. Monte Carlo kinetics. E.g. 1D
- With probability $1 / 2 \rightarrow$ go right
- With probability $1 / 2 \rightarrow$ go left
- Be careful with boundary conditions

- Can easily be biased
- Can be simulated on spurious lattices, e.g. Parcolation clusters

Diffusion

- Solution for diffusion on finite lattice:
- Count steps in both directions
- The net move is $W=n_{+}-n_{0}$
- Use ensemble average
- Plot $\left\langle W^{2}\right\rangle$ vs. t

Page 26

Optimization

- General problem of finding the ground state
- Phase-space:
- Arbitrary number of dimensions
- Methods:
- Steepest Descent
- Stimulated Annealing
- Genetic algorithm

Page 27

Gradient based optimization

- Given $f(\mathbf{x})$, with $\mathbf{x}=\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$
- Gradient $\nabla f(\mathbf{x}) \equiv \mathbf{g}(\mathbf{x})=\left\{\partial_{1} f, \partial_{2} f, \ldots \partial_{n} f\right\}$
- Second order partial derivatives: square symmetric matrix called the Hessian matrix:

$$
\nabla^{2} f(\mathbf{x}) \equiv H(\mathbf{x}) \equiv\left(\begin{array}{ccc}
\partial_{1} \partial_{1} f & \ldots & \partial_{1} \partial_{n} f \\
\vdots & \ddots & \vdots \\
\partial_{1} \partial_{n} f & \ldots & \partial_{n} \partial_{n} f
\end{array}\right)
$$

General Gradient Algorithm

1. Test for convergence
2. Compute a search direction
3. Compute a step length
4. Update x

Page 29

Steepest descent algorithm

1. Start from x_{0}
2. Compute $\mathbf{g}\left(\mathbf{x}_{k}\right) \equiv \nabla f\left(\mathbf{x}_{k}\right)$. If $\left\|\mathbf{g}\left(\mathbf{x}_{k}\right)\right\| \leq \varepsilon_{g}$ then stop, otherwise, compute normalized search direction $\mathbf{p}_{k}=-\mathbf{g}\left(\mathbf{x}_{k}\right) /\left\|\mathbf{g}\left(\mathbf{x}_{k}\right)\right\|$
3. Compute α_{k} such that $f\left(\mathbf{x}_{k}+\alpha \mathbf{p}_{k}\right)$ is minimized
4. New point: $\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha \mathbf{p}_{k}$
5. Test for $\left|f\left(\mathbf{x}_{k+1}-f\left(\mathbf{x}_{k}\right)\right)\right| \leq \varepsilon_{a}+\varepsilon_{r}\left|f\left(\mathbf{x}_{k}\right)\right|$ and stop if fulfilled in two successive iterations, otherwise go to 2 .

Page 30

Conjugate Gradient Method

1. Start from x_{0}
2. Compute $\mathbf{g}\left(\mathbf{x}_{k}\right) \equiv \nabla f\left(\mathbf{x}_{k}\right)$. If $\left\|\mathbf{g}\left(\mathbf{x}_{k}\right)\right\| \leq \varepsilon_{g}$ then stop, otherwise Go to 5
3. Compute $\mathbf{g}\left(\mathbf{x}_{k}\right) \equiv \nabla f\left(\mathbf{x}_{k}\right)$. If $\left\|\mathbf{g}\left(\mathbf{x}_{k}\right)\right\| \leq \varepsilon_{g}$ then stop, otherwise continue
4. Compute the new conjugate gradient direction $\mathbf{p}_{k}=-\mathbf{g}_{k}+\beta_{k} \mathbf{p}_{k-1}$, where

$$
\beta=\left(\frac{\left\|\mathbf{g}_{k}\right\|}{\left\|\mathbf{g}_{k-1}\right\|}\right)^{2}
$$

5. Compute α_{k} such that $f\left(\mathbf{x}_{k}+\alpha \mathbf{p}_{k}\right)$ is minimized
6. New point: $\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha \mathbf{p}_{k}$
7. Test for $\left|f\left(\mathbf{x}_{k+1}-f\left(\mathbf{x}_{k}\right)\right)\right| \leq \varepsilon_{a}+\varepsilon_{r}\left|f\left(\mathbf{x}_{k}\right)\right|$ and stop if fulfilled in two successive iterations, otherwise go to 3 .

Page 31

Modified Newton's method

Second order method

1. Start from x_{0}
2. Compute $\mathbf{g}\left(\mathbf{x}_{k}\right) \equiv \nabla f\left(\mathbf{x}_{k}\right)$. If $\left\|\mathbf{g}\left(\mathbf{x}_{k}\right)\right\| \leq \varepsilon_{g}$ then stop, otherwise, continue
3. Compute $H\left(x_{k}\right) \equiv \nabla^{2} f\left(\mathrm{x}_{k}\right)$ and the search direction $\mathbf{p}_{k}=-H^{-1} \mathbf{g}_{k}$
4. Compute α_{k} such that $f\left(\mathbf{x}_{k}+\alpha \mathbf{p}_{k}\right)$ is minimized
5. New point: $\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha \mathbf{p}_{k}$
6. Go to 2.

Metastability

- At first order transitions the correlation length remains finite.
- The mechanism of the first order transition is usually nucleation, which is related to metastability.
- Examples can be observed at hysteresis or undercooling, overheating, over-compessing etc.

Nucleation

- There is a competition between the bulk free energy of the droplet and its surface energy
- There is a critical nucleus size above which the transition is very rapid.
- However, such a critical nucleus has to be created by spontaneous fluctuations - which takes (sometimes enormously long) time.

Page 34

Glassy behavior, frustration

- Model glass: spin-glass:

$$
H=-\frac{1}{2} \sum_{\langle i, j\rangle} J_{i j} S_{i} S_{j}
$$

- where $J_{i j}$ are random quenched variables with 0 mean (e.g. $\pm J$ with probability half)

Rugged energy landscape.

Rugged energy landscape

- Typical example NP-complete problems:
- Traveling salesman
- Graph partitioning
- Spin-glass
- No full optimization is possible (do we need it?)
- Very good minimas can be obtained by optimization
- Simulated annealing
- Genetic algorithm

Simulated annealing

- Cool down the system slowly
- Warm up and down if needed, if the system quenched into a local minimum
- One needs a Hamiltonian and an elementary move
- Traveling salesman
- Path length
- Exchange two cities in the path
- Use Metropolis simulated annealing. ($T \sim$ alcohol)

Demo movie

Genetic algorithm

- Learn from nature
- Let the fittest to survive
- Fitness function, e.g. energy, length, etc.
- Combine different strategies
- State is represented by a vector (genetic code or genotype)
- Phasespace, city order, neural network parameters, etc.
- Offsprings have two parents with shared genetic code
- Mutations
- Those who are not fit enough die out
- Keep the number of agents fixed

Genetic algorithm: Reproduction

- Two parents and two children

Page 39

Genetic algorithm terminology

- Chromosome: Carrier of the genetic representation
- Gene: Smallest units in the chromosome with individual meaning
- Parents: Pair of chromosomes, wich produce offsprings
- Population: Set of chromosomes from which the parents are selected. Its size should be larger than the length of the chromosome
- Selection principle: The way parents are selected (random, elitistic)
- Crossover: Recombination of the genes of the parents by mixing
- Crossover rate: The rate by which crossover takes place (~90\%)
- Mutatation: Random change of genes
- Mutation rate: The rate by which mutation takes place ($\sim 1 \%$)
- Generation: The pool after one sweep.

Genetic algorithm terminology

Page 41

