Simulations in Statistical Physics
 Course for MSc physics students

Janos Török
Department of Theoretical Physics

October 21, 2014

Page 1

Percolation model

Bond [site] percolation

- Let us have a lattice (network)
- Each bond [site] is occupied with probability p
- (unoccupied with probability $1-p$)
- A cluster is a set of sites connected by occupied bonds [A cluster is a set of occupied sites]

Hoshen-Kopelman Algorithm

- Numerical task: find clusters
- Identify clusters
- Visit all sites
- Mark them with numbers

02		0	0						3	
002	0	0	4	0					0	
022	2	2	0	0	-				5	5
602	2	0	7	-	-			5	0	
002	2	0	0	0			-	0	8	5
902	0	10	0	0			0		0	
990		10	0	5	5		5	5	5	0
900				0				0		
990		10	10							00
13										

Page 3

Hoshen-Kopelman Algorithm

- Site percolation
- Helical boundary conditions
- Go through site in typewriter style
- Check left and above

Page 4

Hoshen-Kopelman Algorithm, Helical BC

$\operatorname{link}[1]=1$
$\operatorname{link}[2]=1$
$\operatorname{link}[3]=1$
$\operatorname{link}[4]=4$
$\operatorname{link}[5]=1$
$\operatorname{link}[6]=6$

Hoshen-Kopelman Algorithm

```
largest_label = 0;
for (y = 0; y < n_rows;y++) {
    for (x = 0; x < n_columns; x++) {
        if (occupied[x][y]) {
            left = occupied[x-1][y];
            above = occupied[x][y-1];
            if (left == 0) && (above == 0) {
                largest_label ++;
                label[x][y] = largest_label;
                } else if (left != 0) && (above == 0) {
                label[x,y] = find(left);
                } else if (left == 0) && (above != 0) {
                    label[x,y] = find(above);
                } else {
                label[x,y] = union(left,above);
                }
        }
    }
    /* Helical boundary conditions */
    if (occupied[n_columns-1][y]) && (occupied[0][y]) {
        union(occupied[n_columns-1][y],occupied[0][y])
    }
}
```


Hoshen-Kopelman Algorithm

```
largest_label = 0;
for (y = 0;y < n_rows;y++) {
    for (x = 0; x < n_columns; x++) {
        if (occupted[x][y]) {
            left = occupled[x-1][y];
            above = occupled[x][y-1];
            if (left == 0) && (above == 0) {
                largest_label ++;
                label[x][y] = largest_label;
            } else if (left I= 0) && (above == 0) {
                label[x,y] = find(left):
            } else if (left == 0) && (above != 0) {
                label[x,y] = find(above):
            } else {
                label[x,y] = union(left,above);
            }
        }
    }/*
    /* Helical boundary conditions */
    if (occupied[n_columns-1][y]) && (occupied[0][y]) {
        union(occupied[n_columns-1][y],occupied[0][y])
    }
```

```
int link[N];
```

int link[N];
int find(int x) {
int find(int x) {
while (link[x] != x)
while (link[x] != x)
x = link[x];
x = link[x];
return x;
return x;
}

```
}
```

```
int union(int }x\mathrm{ , int }y\mathrm{ ) {
    int fx = find(x);
    int fy = find(y);
    if (fx < fy) {
        link[fy] = fx;
        return (fx);
    } else {
        link[fx] = fy;
        return (fy);
    }

\section*{Hoshen-Kopelman Algorithm}
- Go through lattice as typewriter
- Check neighbors
- Resolve conflicts by linking clusters together
- Original trick: use link[] array for cluster size measure
- link[] positive: number of sites in the cluster
- link[] negative: cluster is linked to on other cluster
- Not necessary faster than a seperate arrey for size

\section*{Percolation on networks (graphs)}
- Network is defined by nodes and links
- Two arrays:
- node[] list of nodes
- link[i][] list of links of node i
- link[i][j] is a link between \(i\) and \(j\)
- Cluster: nodes connected with links
- Links can be directed link[i][j] is a link from \(i \rightarrow j\)

\section*{Stack (Verem - Hole/Pitfall)}
- Last in forst out (LIFO)
- Code:
```

int Stack_size = Hopefully_large_enough_number;
int stack[Stack_size];
int }\textrm{sp}=0\mathrm{ ;
void push(int item) {
stack[sp++] = item;
if (sp == Stack_size) enlarge_array(stack);
}
int pop() {
return(stack[--sp]);
}

```
- Error handling?
- Size of the stack?


Page 10

\section*{Percolation on networks (graphs)}


\section*{Percolation on networks (graphs)}
- Connected components
- Theory: \(p_{c}\) for random graph: number of links \(L\) is half of the number of nodes \(N: L=N / 2\)
- Robustness:


Page 12

\section*{Algorithm percolation on networks (graphs)}
1. Go through each node
2. Put node in the stack
3. Get a node from the stack
4. Go through each unmarked link of the node
5. Put other end of links in the stack if it is not marked
6. Mark nodes
7. If the stack not empty Go to 3 .
8. If the stack empty Go to 1 .

Page 13

\section*{Algorithm percolation on networks (graphs)}
\begin{tabular}{|lll|lll|lllll|}
\hline 1 & 2 & 3 & 1 & 2 & 3 & 1 & 2 & 3 & 1 & 2 \\
\hline
\end{tabular}

Page 14

\section*{Algorithm percolation on networks (graphs)}
```

int node[N];
int nlink[N];
int link[N][N]
int stack[N]
int SP;
void percol() {
int }a,b,l
int cluster

```

```

 sp=0;
 | if (node[a] == 0) {
 stack[sp++] = a;
 node[a] = cluster++
 }
 while (}sp>>0)
 i=stack[--sp];
 for (b=0}b<nlink[l] b++) {
 if (node[b] == 0) {
 stack[sp++] = b;
 node[b] = node[a], ,,,一, 8. if the stack empty Go to 1.
    ```

\section*{Result}


Page 16

\section*{Determine \(p_{c}\)}
- From order parameter:

- Increase and decrease \(p\) by \(p / 2\) to converge to \(p_{c}\)
- Use the monotonity of the percolation
- Same random number sequence can be generated!


Page 17

\section*{Monotonity}

Not always true!
a)

1)
b)


3)
4)
2)

c)


d)


9. ábra: \(\mathrm{Az} \mathrm{a} / 1\) helyen található konfigurációból kiindulva blokkolt határciklushoz jutunk (a/3). A b/1
helyen az a/1 konfigurációhoz hozzávettük még a vastagon kihúzott nyilat, így a b/1-ben a sűrüség nagyobb
Page 18

\section*{Ising-model}
- Spins
- Interact with extrenal field \(h_{i}\)
- Interact with neighbors with coeff. \(J_{i j}\)
- The Hamiltonian:
\[
H(\sigma)=-\sum_{\langle i j\rangle} J_{i j} \sigma_{i} \sigma_{j}-\mu \sum_{i} h_{i} \sigma_{i}
\]
- Order parameter magnetization
\[
M=\sum_{i} \sigma_{i}
\]

\section*{2D Ising-model}
- 2 dimensions
- Homogeneous interaction: \(J_{i j}=J\)
- No external field (for the time being) \(h=0\)
\begin{tabular}{|c|c|c|c|c|}
\hline & T & 1 & & \\
\hline 1 & T & T & 1 & 1 \\
\hline 1 & 1 & T & T & 1 \\
\hline 1 & T & T & T & 1 \\
\hline & & & - & \\
\hline
\end{tabular}

\section*{Importance sampling}
- Given a Hamiltonian \(H(\mathbf{q}, \mathbf{p})\)
- We ask for the time average of a dynamics quantity at temperature \(T\)
\[
\bar{A}=\int A(\mathbf{q}, \mathbf{p}) P^{e q}(\mathbf{q}, \mathbf{p}, T) d \mathbf{q} d \mathbf{p}
\]
- In the canonical ensemble
\[
P^{e q}(\mathbf{q}, \mathbf{p}, T)=\frac{1}{Z} e^{-\beta H(\mathbf{q}, \mathbf{p})}
\]
- If \(A\) depends only on the energy (often the case):
\[
\bar{A}=\int A(E) \omega(E) P^{e q}(E, T) d E
\]

Importance sampling is needed!
Page 21

\section*{Importance sampling}
- \(\omega(E) P^{e q}(E, T)\) has a very sharp peak (for large \(N\) )
- System spends most of its time in equilibrium
- Importance sampling:

Generate configurations with the equilibrium probability
- if configurations are chosen accordingly, the for \(K\) measurements:
\[
\bar{A} \simeq \frac{1}{K} \sum_{i=1}^{K} A_{i}
\]

How togenerate equilibrium configurations?

Page 22

\section*{Metropolis algorithm}
(Metropoli-Rosenbluth-Rosenbluth-Teller-Teller \(=\mathrm{MR}^{2} \mathrm{~T}^{2}\) algorithm)
- Sequence of configurations using a Markov chain
- Configuration is generated from the previous one
- Transition probability: equilibrium probability
- Detailed balance:
\[
P(x) P\left(x \rightarrow x^{\prime}\right)=P\left(x^{\prime}\right) P\left(x^{\prime} \rightarrow x\right)
\]
- Rewritten:
\[
\frac{P\left(x \rightarrow x^{\prime}\right)}{P\left(x^{\prime} \rightarrow x\right)}=\frac{P\left(x^{\prime}\right)}{P(x)}=e^{-\beta \Delta E}
\]
- Only the ration of transition probabilities are fixed

\section*{Metropolis algorithm}
(Metropoli-Rosenbluth-Rosenbluth-Teller-Teller \(=\mathrm{MR}^{2} \mathrm{~T}^{2}\) algorithm)
\[
\frac{P\left(x \rightarrow x^{\prime}\right)}{P\left(x^{\prime} \rightarrow x\right)}=\frac{P\left(x^{\prime}\right)}{P(x)}=e^{-\beta \Delta E}
\]
- Metropolis:
\[
P\left(x \rightarrow x^{\prime}\right)= \begin{cases}e^{-\beta \Delta E} & \text { if } \Delta E>0 \\ 1 & \text { otherwise }\end{cases}
\]
- Symmetric:
\[
P\left(x \rightarrow x^{\prime}\right)=\frac{e^{-\beta \Delta E}}{1+e^{-\beta \Delta E}}
\]

\section*{Characteristic time}
- Equilibrium: system is stationary.
- We can measure after relaxation time
- New measurement after correlation time
\[
\phi_{E E}(t)=\frac{\left\langle E\left(t^{\prime}\right) E\left(t^{\prime}+t\right)\right\rangle-\langle E\rangle^{2}}{\left\langle E^{2}\right\rangle-\langle E\rangle^{2}}, \quad \tau=\int_{0}^{\infty} \phi_{E E}(t) d t
\]
- Sample with intervals \(\Delta t>\tau\)


\section*{Metropolis algorithm}

Recipes:
- Choose an elementary step \(x \rightarrow x^{\prime}\)
- Calculate \(\Delta E\)
- Calculate \(P\left(x \rightarrow x^{\prime}\right)\)
- Generate random number \(r \in[0,1]\)
- If \(r<P\left(x \rightarrow x^{\prime}\right)\) then new state is \(x^{\prime}\); otherwise it remains \(x\)
- Increase time
- Measure what you want
- Restart
:-)

Page 26

\section*{Metropolis algorithm, proposal probability}

Transition probability:
\[
P\left(x \rightarrow x^{\prime}\right)=g\left(x \rightarrow x^{\prime}\right) A\left(x \rightarrow x^{\prime}\right)
\]
- \(g\left(x \rightarrow x^{\prime}\right)\) : proposal probability
- Generally uniform
- If different interactions are present then it must be incorporated
- \(A\left(x \rightarrow x^{\prime}\right)\) : acceptance probability
- Metropolis
- Symmetric

\section*{Metropolis, proof}

State flow
Let \(E>E^{\prime}\) :
- \(x \rightarrow x^{\prime}\)
\[
P(x) g\left(x \rightarrow x^{\prime}\right) A\left(x \rightarrow x^{\prime}\right)=P(x)
\]
- \(x^{\prime} \rightarrow x\)
\[
P\left(x^{\prime}\right) g\left(x^{\prime} \rightarrow x\right) A\left(x^{\prime} \rightarrow x\right)=P\left(x^{\prime}\right) e^{-\beta \Delta E}
\]
- In equilibrium they are equal:
\[
\frac{P(x)}{P\left(x^{\prime}\right)}=e^{\beta \Delta E}
\]
- What we wanted.

\section*{Finite size effects}

Magnetization 2d lattice Ising model
- Determine critical temperature
- Determine critical exponents
- System size dependence???


Page 29

\section*{Finite size scaling}
- Correlation length
\[
\xi \propto\left|T-T_{c}\right|^{-\nu}
\]
- Cannot be infinite!
- There will be a critical point for the finite system
- If \(L\) is finite \(\xi\) cannot be larger than \(L\)
\[
L \propto\left|T(L)-T_{c}\right|^{-\nu}
\]
- The position and the width of the transition
\[
\left|T(L)-T_{c}\right| \propto L^{-1 / \nu}
\]
- 3 parameters to fit \(\nu, T(L)\), and a constant

\section*{Finite size scaling}
- Binder Cumulant method (find something which does not scale with \(L\) )
- Find something which scales with \(\nu\)
- The standard deviation of the order parameter:
\[
\sigma(L) \propto L^{-1 / \nu}
\]
- Two steps, both with two parameter fits:
\[
\begin{aligned}
\sigma(L) & \propto L^{-1 / \nu} \\
\left|T(L)-T_{c}\right| & \propto L^{-1 / \nu}
\end{aligned}
\]

Three parameter fit: Ising model
- Theory: \(\nu=1, T_{c} \simeq 2.27\)


Page 32

Finite size scaling: Ising model
- Theory: \(\nu=1, T_{c} \simeq 2.27\)


Page 33

\section*{Fitting}

Linear regression
\[
\begin{align*}
& y=\alpha+\beta x \\
& \hat{\beta}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}=\frac{\overline{x y}-\bar{x} \bar{y}}{\overline{x^{2}}-\bar{x}^{2}} \\
& \hat{\alpha}=\bar{y}-\hat{\beta} \bar{x} \\
& \rho=\frac{\overline{x y}}{\sqrt{\bar{x} \bar{y}}} \tag{1}
\end{align*}
\]

\section*{Fitting}

Houbble original fit:

\section*{Hubble's Data (1929)}


Page 35

\section*{Fitting}

Houbble change in time:


Page 36

\section*{Fitting}

Houbble change in time:
```

