Simulations in Statistical Physics
 Course for MSc physics students

Janos Török
Department of Theoretical Physics

October 7, 2014

Page 1

Molecular dynamics

Program:

- Have an algorithm to calculate forces
- Get list of interacting particles
- Determine accelerations and velocities; step particles
- Set temperature

Temperature

Definition:

- Encyclopedia Britannica, Wikipedia:
"A temperature is a numerical measure of hot or cold."
- Thermodynamics:

Second law of thermodynamics \& Carnot engine

$$
\begin{gathered}
\delta Q=T d S \\
\eta_{\max }=\eta_{\text {Carnot }}=1-T_{C} / T_{H}
\end{gathered}
$$

- Statistical physics:

$$
\beta \equiv \frac{1}{k_{B}}\left(\frac{\partial S}{\partial E}\right)_{V, N}=\frac{1}{k_{B} T}
$$

Definition of temperature

Temperature is a measure of the random submicroscopic motions and vibrations of the particle constituents of matter.

The average kinetic energy per particle degrees of freedom is

$$
\bar{E}=\frac{1}{2} k_{B} T
$$

Molecular dynamics conserves only the total energy!
Task: Control kinetic energy!

Page 4

Setting temperature

- Experiment
- Environment
- Mixing \rightarrow uniform temperature
- Simulation
- Control the kinetic energy (velocities)
- Mixing \rightarrow Maxwell-Boltzmann distribution

Nosé-Hoover thermostat

- Original Hamiltonian

$$
H_{0}=\sum_{i} \frac{\mathbf{p}_{i}^{2}}{2 m_{i}}+U(\mathbf{q})
$$

- Heatbath in the Hamiltonian:

$$
H_{n}=\sum_{i} \frac{\mathbf{p}_{i}^{\prime 2}}{2 m_{i}}+U\left(\mathbf{q}^{\prime}\right)+\frac{p_{s}^{2}}{2 Q}+g k_{B} T \log (s)
$$

- Extra degree of freedom s.
- Q "mass" related to $s \rightarrow$ controls the speed of convergence
- $g=3 \mathrm{~N}$ the number degrees of freedom
- \mathbf{p}^{\prime} and \mathbf{q}^{\prime} are virtual coordinates

Nosé-Hoover thermostat

- Virtual coordinates, vs. original ones:

$$
\begin{aligned}
\mathbf{p} & =\mathbf{p}^{\prime} / s \\
\mathbf{q} & =\mathbf{q}^{\prime} \\
t & =\int \frac{1}{s} d t^{\prime}
\end{aligned}
$$

- Solution of the new Hamiltonian:

$$
\begin{aligned}
\xi & =\dot{s} / s=p_{s} / Q \\
\dot{\mathbf{q}^{\prime}} & =\frac{\mathbf{p}^{\prime}}{m} \\
\dot{\mathbf{p}^{\prime}} & =-\frac{\partial U}{\partial q_{i}^{\prime}}-\xi \mathbf{p}_{i}^{\prime} \\
\dot{\xi} & =\frac{1}{Q}\left(\sum_{i} \frac{\dot{\mathbf{p}}_{i}^{\prime}}{m_{i}}-g k_{B} T\right)
\end{aligned}
$$

Molecular dynamics

- Create sample
- Crystal
- Random deposition
- Distorted crystal
- Simulation
- Temperate sample
- Make test
- Collect data
- Data size: e.g. $N=10^{4}, t=10^{6}$ small simulation:
- 1 hour on 1 core PC
- 3 doubles/atom $\rightarrow 24$ bytes/atom/timesteps
- Result 2.410^{11} bytes $=240$ Gigabytes

Alternatives

- Event Driven Dynamics
- Contact Dynamics
- Kinetic Monte Carlo

Event driven dynamics

- Hard core interactions
- Interactions short in time compared to flight
- (MD needs $\sim 20-50$ timesteps per collision, overlap of 10^{-3} d)
- Integrable path \rightarrow do it

Page 10

Event driven algorithm

- No gravity
- Particles: $\mathbf{r}_{i}(t), \mathbf{v}_{i}(t), \boldsymbol{\omega}_{i}(t), R_{i}$
- Calculate collision time: Let $\mathbf{d}_{i j}=\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|-R_{i}-R_{j}$, Then

$$
\tau_{i j}=\frac{\left|\mathbf{d}_{i j}\right|^{2}}{\left(\mathbf{v}_{i}-\mathbf{v}_{j}\right) \mathbf{d}_{i j}}
$$

- Order collision times, get the smallest $\tau_{c}=\min _{i j}\left(\tau_{i j}\right)$
- Go to time $t+\tau_{c} \mathbf{r}_{i}\left(t+\tau_{c}\right)$
- Calculate velocities after collision $\mathbf{v}_{i}\left(t+\tau_{c}\right)$ (may be hard...)
- Restart loop
- Next time Calculate collision time only with i, j
- Dynamic list, change only newly calculate collision times

Inelastic collapse

- Coefficient of restitution $r=v_{n}\left(t_{c}+\right) / v_{n}\left(t_{c}-\right)$
- Energy is lost in an exponential way (Ping Pong)
- Infinite collisions in finite time
- Solution $\rightarrow r=1$ if collisions occur more frequently than a parameter $t_{\text {cont }}$, the contact duration
- Contact \rightarrow small vibration :-(well. . .)

Page 12

Contact dynamics

- Perfectly rigid particles
- Constraints
- Implicit forces

$$
\begin{aligned}
& \mathbf{v}_{i}(t+\Delta t)=\mathbf{v}_{i}(t)+\frac{1}{m_{i}} \mathbf{F}_{i}(t+\Delta t) \Delta t \\
& \mathbf{x}_{i}(t+\Delta t)=\mathbf{x}_{i}(t)+\mathbf{v}_{i}(t+\Delta t) \Delta t
\end{aligned}
$$

Contact dynamics, force calculation

- Two particles with gap g

if $\quad v^{\text {free }}{ }_{n} \Delta t+g^{\text {pos }}>0$

$$
\text { then } \quad\left\{\overrightarrow{\mathcal{R}}^{\text {new }}=0\right.
$$

(no contact)
else $\left\{\begin{array}{l}\mathcal{R}_{n}^{\text {new }}=-\frac{1}{\Delta t} m_{n}\left(\frac{g^{\text {pos }}}{\Delta t}+\mathcal{V}_{n}^{\text {free }}\right) \\ \overrightarrow{\mathcal{R}}_{t}^{\text {new }}=-\frac{1}{\Delta t} m_{t} \overrightarrow{\mathcal{V}}_{t}^{\text {free }}\end{array}\right.$

> (sticking contact)
if $\quad\left|\overrightarrow{\mathcal{R}}_{t}^{\text {new }}\right|>\mu \mathcal{R}_{n}^{\text {new }}$

$$
\text { then }\left\{\overrightarrow{\mathcal{R}}_{t}^{\text {new }}=\mu \mathcal{R}_{n}^{\text {new }} \frac{\overrightarrow{\mathcal{R}}_{t}^{\text {new }}}{\left|\overrightarrow{\mathcal{R}}_{t}^{\text {new }}\right|}\right.
$$

(sliding contact)

Iterative solver

- Updates:
- Parallel: calculate all contacts with old values then change to new at once \rightarrow serious instabilities
- Serial: update contacts one-by-one in random order

Page 15

Particle chain

- One iteration step:

$$
\mathcal{R}_{i}^{\text {new }}=\frac{1}{2}\left(\mathcal{R}_{i-1}^{\text {new }}+\mathcal{R}_{i+1}^{\text {new }}\right),
$$

- Discretized one-dimensional diffusion equation
- Model of rigid particles \rightarrow elastic
- Elasticity depends on the number of iterations

Molecular versus Contact dynamics

Limit

$$
\frac{K r^{2}}{m v^{2}}=N^{4 / d}
$$

Kinetic Monte Carlo

- Particle sits in a potential well for ages ...
- What to do?

Kinetic Monte Carlo

- Long lasting steady state positions
- Slow thermally activated processes
- Infrequent-event system

Solution:

- Consider only jumps between neighboring energy wells
- Probability of jump $P \sim \exp \left(-\beta E_{b}\right)$
- Rate of jump $i \rightarrow j, k_{i j}=E_{b}$.

Page 19

Kinetic Monte Carlo

- Get all possible rates k_{i}
- Calculate the cumulative function $K=\sum_{i} k_{i}$
- Get a uniform random number u (between 0 and 1)
- Execute the event i for which $\sum_{j=1}^{i} k_{j}>u>\sum_{j=1}^{i-1} k_{j}$
- Get new uniform random number u^{\prime} (between 0 and 1)
- Update time to $t=t+\Delta t, \Delta t=-\log \left(u^{\prime}\right) / k_{i}$
- Recalculate rates, which have changed
- Restart loop

Monte Carlo

Why Monte Carlo? \rightarrow Random numbers play big role!

Page 21

Kinetic Monte Carlo

- Rates
- Physics
- Molecular dynamics
- Must include all rates!
- Used for:
- Surface diffusion
- Surface growth
- Syntering
- Domain evolution

Example....

Page 22

Methods

- Molecular Dynamics
- General
- Event Driven Dynamics
- Hard objects, at low density
- Contact Dynamics
- Rigid particles
- Kinetic Monte Carlo
- Infrequent events, bonded particles

Page 23

Parallelization

- Why?
- The speed of one core processor is limited
- Larger system sizes
- Multi-core processors
- On multi-core system inter-processor data change is fast
- Why not?
- Computing power is lost
- Much more code development
- Very often ensemble average is needed
- Inter-computer communication is terribly slow

RAM $\rightarrow \sim 15 \mathrm{~GB} / \mathrm{s}$, Ethernet $125 \mathrm{MB} / \mathrm{s}$, Infiniband $\sim 1 \mathrm{~GB} / \mathrm{s}$

Parallelization (Bird flocking model)

Parallelization

- Molecular dynamics
- Short range interactions: Box must be duplicated, Verlet in parallel
- Long range: Parallel fast Fourier transformation
- Contact dynamics
- Short range interactions: Box must be duplicated, Iteration in parallel
- Event Driven Dynamics
- List must be global, no way!
- Kinetic Monte Carlo
- List must be global, no way!

Efficiency of parallelization

- Large systems are needed
- Boundary must be minimal

Efficiency of parallelization

(b)

- Calculate time spent in a branch
- Calculate $\sigma_{T}=\sqrt{\left\langle T^{2}\right\rangle-\langle T\rangle^{2}} /\langle T\rangle$
- Move line if necessary $\left(\sigma_{T}>\sigma_{T}^{*}\right)$
- Lower in tree (up in Fig), larger the mass of the border
- Only rarely, data transfer is expensive

