Simulations in Statistical Physics Course for MSc physics students

Janos Török

Department of Theoretical Physics

October 7, 2014

Molecular dynamics

Program:

- ► Have an algorithm to calculate forces
- Get list of interacting particles
- Determine accelerations and velocities; step particles
- Set temperature

Temperature

Definition:

- Encyclopedia Britannica, Wikipedia:
 "A temperature is a numerical measure of hot or cold."
- Thermodynamics:Second law of thermodynamics & Carnot engine

$$\delta Q = extit{TdS}$$
 $\eta_{\sf max} = \eta_{\sf Carnot} = 1 - extit{T}_C/ extit{T}_H$

Statistical physics:

$$\beta \equiv \frac{1}{k_B} \left(\frac{\partial S}{\partial E} \right)_{V,N} = \frac{1}{k_B T}$$

Definition of temperature

Temperature is a measure of the random submicroscopic motions and vibrations of the particle constituents of matter.

The average kinetic energy per particle degrees of freedom is

$$\bar{E} = \frac{1}{2} k_B T$$

Molecular dynamics conserves only the total energy!

Task: Control kinetic energy!

Setting temperature

- Experiment
 - Environment
 - lacktriangleright Mixing ightarrow uniform temperature
- Simulation
 - Control the kinetic energy (velocities)
 - $\blacktriangleright \ \, \mathsf{Mixing} \to \mathsf{Maxwell}\text{-}\mathsf{Boltzmann} \,\, \mathsf{distribution}$

Nosé-Hoover thermostat

Original Hamiltonian

$$H_0 = \sum_i \frac{\mathbf{p}_i^2}{2m_i} + U(\mathbf{q})$$

Heatbath in the Hamiltonian:

$$H_n = \sum_i \frac{\mathbf{p}'_i^2}{2m_i} + U(\mathbf{q}') + \frac{p_s^2}{2Q} + gk_B T \log(s)$$

- Extra degree of freedom s.
- $lackbox{ }Q$ "mass" related to s o controls the speed of convergence
- g = 3N the number degrees of freedom
- p' and q' are virtual coordinates

Nosé-Hoover thermostat

▶ Virtual coordinates, vs. original ones:

$$egin{aligned} \mathbf{p} &= \mathbf{p}'/s \ \mathbf{q} &= \mathbf{q}' \ t &= \int rac{1}{s} dt' \end{aligned}$$

► Solution of the new Hamiltonian:

$$\xi = \dot{s}/s = p_s/Q$$

$$\dot{\mathbf{q}}' = \frac{\mathbf{p}'}{m}$$

$$\dot{\mathbf{p}}'_i = -\frac{\partial U}{\partial q_i'} - \xi \mathbf{p'}_i$$

$$\dot{\xi} = \frac{1}{Q} \left(\sum_i \frac{\dot{\mathbf{p}}'_i^2}{m_i} - g k_B T \right)$$

Molecular dynamics

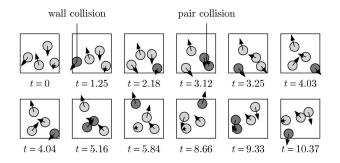
- Create sample
 - Crystal
 - Random deposition
 - Distorted crystal
 - Simulation
- Temperate sample
- Make test
- Collect data
 - ▶ Data size: e.g. $N = 10^4$, $t = 10^6$ small simulation:
 - ▶ 1 hour on 1 core PC
 - 3 doubles/atom → 24 bytes/atom/timesteps
 - Result 2.4 10^{11} bytes = 240 Gigabytes

Alternatives

- Event Driven Dynamics
- Contact Dynamics
- Kinetic Monte Carlo

Event driven dynamics

- Hard core interactions
- Interactions short in time compared to flight
- (MD needs $\sim 20-50$ timesteps per collision, overlap of $10^{-3}d$)
- ▶ Integrable path \rightarrow do it



Event driven algorithm

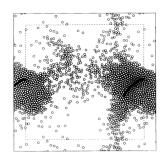
- No gravity
- ▶ Particles: $\mathbf{r}_i(t)$, $\mathbf{v}_i(t)$, $\omega_i(t)$, R_i
- ▶ Calculate collision time: Let $\mathbf{d}_{ij} = |\mathbf{r}_i \mathbf{r}_j| R_i R_j$, Then

$$\tau_{ij} = \frac{|\mathbf{d}_{ij}|^2}{(\mathbf{v}_i - \mathbf{v}_j)\mathbf{d}_{ij}}$$

- lacktriangle Order collision times, get the smallest $au_c = \min_{ij} (au_{ij})$
- Go to time $t + \tau_c \mathbf{r}_i(t + \tau_c)$
- ullet Calculate velocities after collision $oldsymbol{v}_i(t+ au_c)$ (may be hard...)
- Restart loop
- Next time Calculate collision time only with i, j
- Dynamic list, change only newly calculate collision times

Inelastic collapse

- ▶ Coefficient of restitution $r = v_n(t_c+)/v_n(t_c-)$
- Energy is lost in an exponential way (Ping Pong)
- Infinite collisions in finite time
- ▶ Solution \rightarrow r=1 if collisions occur more frequently than a parameter $t_{\rm cont}$, the contact duration
- Contact → small vibration :-(well...)

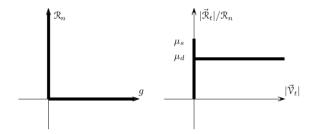


Contact dynamics

- Perfectly rigid particles
- Constraints
- Implicit forces

$$\mathbf{v}_i(t + \Delta t) = \mathbf{v}_i(t) + \frac{1}{m_i} \mathbf{F}_i(t + \Delta t) \Delta t$$

$$\mathbf{x}_i(t + \Delta t) = \mathbf{x}_i(t) + \mathbf{v}_i(t + \Delta t) \Delta t$$



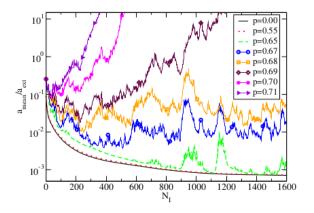
Contact dynamics, force calculation

▶ Two particles with gap g

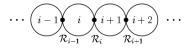
$$\begin{split} & \underbrace{\vec{F}_{l}^{\text{ret}}}_{l} \underbrace{1} \underbrace{\vec{F}_{l}^{\text{ext}}}_{l} \underbrace{\vec{F}_{l}^{\text{ext}}}_{l} \\ & \text{if} \quad \mathcal{V}^{\text{free}}_{n} \Delta t + g^{\text{pos}} > 0 \\ & \text{then} \quad \left\{ \vec{\mathcal{R}}^{\text{new}} = 0 & \text{(no contact)} \\ & \\ & \mathcal{R}^{\text{new}}_{n} = -\frac{1}{\Delta t} m_{n} \left(\frac{g^{\text{pos}}}{\Delta t} + \mathcal{V}^{\text{free}}_{n} \right) \\ & \left| \vec{\mathcal{R}}^{\text{new}}_{l} \right| > \mu \mathcal{R}^{\text{new}}_{n} \\ & \text{then} \quad \left\{ \vec{\mathcal{R}}^{\text{new}}_{l} = \mu \mathcal{R}^{\text{new}}_{n} \frac{\vec{\mathcal{R}}^{\text{new}}_{l}}{\left| \vec{\mathcal{R}}^{\text{new}}_{l} \right|} \right. \end{aligned} \tag{sticking contact)} \end{split}$$

Iterative solver

- ► Updates:
 - Parallel: calculate all contacts with old values then change to new at once → serious instabilities
 - Serial: update contacts one-by-one in random order



Particle chain



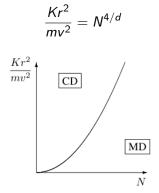
One iteration step:

$$\mathcal{R}_i^{\text{new}} = \frac{1}{2} \left(\mathcal{R}_{i-1}^{\text{new}} + \mathcal{R}_{i+1}^{\text{new}} \right),$$

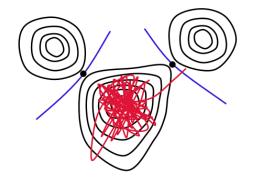
- Discretized one-dimensional diffusion equation
- lacktriangle Model of rigid particles ightarrow elastic
- Elasticity depends on the number of iterations

Molecular versus Contact dynamics

Limit



- ▶ Particle sits in a potential well for ages . . .
- ▶ What to do?



- Long lasting steady state positions
- Slow thermally activated processes
- Infrequent-event system

Solution:

- Consider only jumps between neighboring energy wells
- Probability of jump $P \sim \exp(-\beta E_b)$
- ▶ Rate of jump $i \rightarrow j$, $k_{ij} = E_b$.

- Get all possible rates k_i
- ▶ Calculate the cumulative function $K = \sum_i k_i$
- ► Get a uniform random number *u* (between 0 and 1)
- ► Execute the event i for which $\sum_{j=1}^{i} k_j > u > \sum_{j=1}^{i-1} k_j$
- ▶ Get new uniform random number u' (between 0 and 1)
- ▶ Update time to $t = t + \Delta t$, $\Delta t = -\log(u')/k_i$
- Recalculate rates, which have changed
- Restart loop

Monte Carlo

Why Monte Carlo? → Random numbers play big role!

- Rates
 - Physics
 - Molecular dynamics
- Must include all rates!
- Used for:
 - Surface diffusion
 - Surface growth
 - Syntering
 - Domain evolution

Example....

Methods

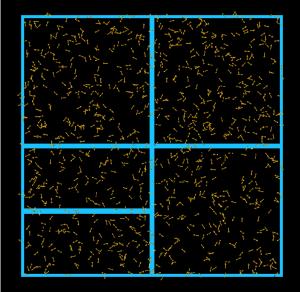
- Molecular Dynamics
 - General
- Event Driven Dynamics
 - Hard objects, at low density
- Contact Dynamics
 - Rigid particles
- Kinetic Monte Carlo
 - Infrequent events, bonded particles

Parallelization

- ► Why?
 - ▶ The speed of one core processor is limited
 - Larger system sizes
 - Multi-core processors
 - On multi-core system inter-processor data change is fast
- ▶ Why not?
 - Computing power is lost
 - Much more code development
 - Very often ensemble average is needed
 - Inter-computer communication is terribly slow

RAM $ightarrow \sim 15$ GB/s, Ethernet 125MB/s, Infiniband ~ 1 GB/s

Parallelization (Bird flocking model)

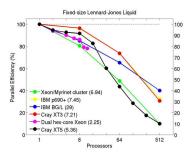


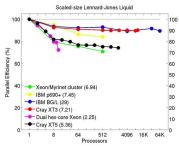
Parallelization

- Molecular dynamics
 - Short range interactions: Box must be duplicated, Verlet in parallel
 - Long range: Parallel fast Fourier transformation
- Contact dynamics
 - Short range interactions: Box must be duplicated, Iteration in parallel
- Event Driven Dynamics
 - List must be global, no way!
- Kinetic Monte Carlo
 - List must be global, no way!

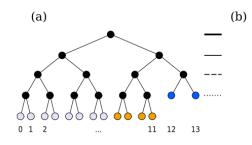
Efficiency of parallelization

- Large systems are needed
- Boundary must be minimal





Efficiency of parallelization



5	7	12	13
4	6	0	11
1	3	9	11
0	2	8	10

- Calculate time spent in a branch
- Calculate $\sigma_T = \sqrt{\langle T^2 \rangle \langle T \rangle^2} / \langle T \rangle$
- ▶ Move line if necessary $(\sigma_T > \sigma_T^*)$
- ▶ Lower in tree (up in Fig), larger the mass of the border
- Only rarely, data transfer is expensive