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Boundary conditions

I Real boundary conditions
I Closed (nothing)
I Walls (with temperature)
I Substrate (often too expensive)

I Computer based boundary conditions
I Periodic boundary conditions
I Absorbing (whatever leaves is gone)
I Reflecting (everything is reflected back)
I Walls (some potential)
I Substrate (fixed basis)
I Wall with temperature
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Boundary conditions: Examples
I Periodic boundary conditions
I Walls (some potential)
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Boundary conditions: Examples

Periodic boundary conditions

Substrate (fixed basis)
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Periodic boundary conditions
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Periodic boundary conditions → contacts
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Periodic boundary conditions
I Infinitely many neighboring cells if long range interactions
I Possibility of self interaction (must be charge neutral)

I General solution: long range interactions are handled in
k-space

I Linear momentum is conserved
I Angular momentum is not conserved
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Periodic boundary conditions

Distance
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Periodic boundary conditions deformed box

I Box is tilted, positions of particles artificially moved
I Homogeneous shear
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Periodic boundary conditions deformed box

Distance

I Order matters
I Tilted: by Dxy , Dxz , Dyz
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Periodic boundary conditions Lees-Edwards boundary
conditions → shear

I Images are shifted
I Different from shear by walls
I Different from box tilt
I Stress propagation is important
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Molecular dynamics

MD: Molecular dynamics
DEM: Discrete element method
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Molecular dynamics
Simulate nature

I Solve Newton’s equation of motion

mi r̈i = fi = fexti +
∑

j

f intij , i , j = 1, 2 . . .N
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Application of molecular dynamics

I Molecular systems (classic potentials, temperature)
I Biophysics
I Structural biology
I Glasses
I Amorphous materials
I Liquids

I Granular materials (hard core, dissipative)
I Stones, seeds, pills
I Railbed

I Pedestrians
I Astrological systems (conservative, large scale)
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Program

I Have an algorithm to calculate forces
I Get list of interacting particles
I Determine accelerations and velocities; step particles
I (Set temperature)
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Forces
Internal forces

I Pair potential:
f intij = −f intji = −∇V (rij)

I Many body potentials (molecular bonds)

f intijk = F(ri , rj , rk)

I e.g. 3-body Stillinger-Weber potential:

I Friction forces (next slide...)
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Friction forces

I Moving:

I Stationary:
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Friction forces

I Position is not enough to set friction forces
I No movement → no friction forces
I Solution:

We need history:
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Contact history

I Position is not enough to set friction forces
I Normal force:

Fn = knδnij −meffγn∆vn

I Tangential force:

Ft = kt∆st + meffγt∆vt

∆st = nt

∫ t

tc

{
∆vt(t ′) + [ωi (t ′)ri − ωj(t ′)rj ]

}
dt ′

I Limit ∆st to satisfy |Ft | ≤ µFn
I k stiffness, γ damping (critical)
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Program

I Have an algorithm to calculate forces
I Get list of interacting particles
I Determine accelerations and velocities; step particles
I (Set temperature)
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Find pairs

Now we know how to calculate forces. How to get pairs?
I All pairs: ∼ N2 calculations. Only if there is no other way!
I Short range interactions: box method
I Long range interactions: k-space
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Bucketing algorithm
Finite interaction length L

I Grid with size L
I Grid of array with particle indexes in box
I Maximum number of neighbors or dynamic array
I If there is vmax then L′ = L + vmax∆t, then reset array every

∆t timesteps
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k-space solution

I Long reange interactions (e.g. Coulomb) cannot be cut off
I Often more periodic images are needed
I k-space (Fourier-transformation in 3d!)

I Solution of linear problems by Green’s-function
I Coulomb problem: in Fouier space → multiplication!

I Ewald summation:
I Handle short range in real and long range in k-space
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Program

I Have an algorithm to calculate forces
I Get list of interacting particles
I Determine accelerations and velocities; step particles
I (Set temperature)
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Euler method

I Velocity:
∆v
∆t

= F/m

∆v = F/m∆t

I Displacement
∆x = v∆t

Too bad!
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Runge-Kutta method

I Fourth order method
I Very precise but

I Four times force calculation
I No energy conservation (non-sympletic)
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Leapforg method

I Calculate v(t + 1
2∆t) = v(t − 1

2∆t) + a(t)∆t
I Calculate x(t + ∆t) = x(t) + v(t + 1

2∆t)∆t
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Verlet method
I Calculate v(t + 1

2∆t) = v(t) + 1
2a(t)∆t

I Calculate x(t + ∆t) = x(t) + v(t + 1
2∆t)∆t

I Derive a(t + ∆t) from the forces
I Calculate v(t + ∆t) = v(t + 1

2∆t) + 1
2a(t + ∆t)∆t

Page 28



Sympletic integrator

I Energy (slightly modified) is conserved
I Time reversibility

I Verlet
I Leapfrog

I Most molecular dynamics methods use Verlet!
I Forces are calculated once per turn
I Microcanonical (NVE) modelling can be only done with these
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Multiple time scale integration

I Different force range
I Short range change fast
I Long range change slowly

I Recalculate long range forces only in every nth times-step
I Forces are calculated once per turn

I Typical examples:
I Intramolecular forces: strong, high frequency
I Intermolecular forces (e.g. Lennard-Jones, Coulomb) slow
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Error

Method Error Cumulative error
Euler: ∆t3 ∆t
Runge-Kutta: ∆t5 ∆t4

Verlet: ∆t4 ∆t2

Leapfrog: ∆t4 ∆t2
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