Simulations in Statistical Physics
 Course for MSc physics students

Janos Török
Department of Theoretical Physics

September 16, 2014

Page 1

Simulations

Data collection
Analysis

Page 2

Simulations

Experiments	Simulations
Principle of measurement	Algorithm
Apparatus	Program + Hardware
Calibration	Calibration + Debugging
Sample	Sample
Measurement	Run

Data collection Analysis

Marked ones: Computer codes!

Programming languages

Simulations codes

- System size must be large
- Phase transition $\xi \rightarrow \infty$
- Real systems $N \sim 10^{23}$ (memory $<10^{11}$)
- Simulation time should be long
- Relaxation time
- Interesting phenomena take long
- Separation of time scales

Must be efficient!

It is not bad if program is readable and extensible...
Sample preparation

- Sometimes it is also a simulation

Data analysis

- Anything may happen

Programming languages

Problem to solve:

- Fill an array with product of two random numbers
- Calculate the average of them

```
python
import random
random.seed(12345);
N = 10000
s = []
for i in range(0,N):
    s.append( random.random() * random.random() )
av}=
for i in range(0.N):
    av += s[i]
print av/N
```

```
matlab
N = 10000;
s = zeros(N.1);
rng( 12345);
for i = 0:N
    s(i) = rand * rand;
end
% s = rand(N.1);
av = 0;
for i = 0:N
    av = av + s(i);
end
av = av / N;
% av = sum(s ) / N;
disp( av );
```

Page 5

Programming languages

```
N = 10000;
s = zeros(N.1);
rng( 12345 );
for i = 0:N
    s(i) = rand * rand:
end
% s = rand(N,1);
av = 0;
for i}=0:
    av = av + s(i);
end
av = av / N
% av = sum(s)/N;
disp( av ):
```

```
import random
random.seed(12345);
N = 10000
s = []
for i in range(0,N):
    s.append( random.random() * random.random() )
av}=
for i in range(0,N):
    av += s[i]
print av/N
```

```
```

```
#include <stdlib.h>
```

```
```

\#include <stdlib.h>

```
```

```
#include <stdlib.h>
#include <stdio.h>
#include <stdio.h>
#include <stdio.h>
#include <math.h>
#include <math.h>
#include <math.h>
int main(int argn.char * argv[])
int main(int argn.char * argv[])
int main(int argn.char * argv[])
{
{
{
    int 1.N:
    int 1.N:
    int 1.N:
    double *s:
    double *s:
    double *s:
    double av. rm1;
    double av. rm1;
    double av. rm1;
    N=10000000;
    N=10000000;
    N=10000000;
    s = (double *)calloc(N, sizeof(double));
    s = (double *)calloc(N, sizeof(double));
    s = (double *)calloc(N, sizeof(double));
    srand(12345);
    srand(12345);
    srand(12345);
    rm1 = 1.0 / RAND_MAX;
    rm1 = 1.0 / RAND_MAX;
    rm1 = 1.0 / RAND_MAX;
    for (i=0; i<N; i++) {
    for (i=0; i<N; i++) {
    for (i=0; i<N; i++) {
/* s[i] = (double) rand() * rm1 * rand() * rm1;*/
/* s[i] = (double) rand() * rm1 * rand() * rm1;*/
/* s[i] = (double) rand() * rm1 * rand() * rm1;*/
        s[i] = (double) rand() * rand() / RAND_MAX / RAND_MAX:
        s[i] = (double) rand() * rand() / RAND_MAX / RAND_MAX:
        s[i] = (double) rand() * rand() / RAND_MAX / RAND_MAX:
    }
    }
    }
    av = 0.0:
    av = 0.0:
    av = 0.0:
    for (i=0:i<N: i++) {
    for (i=0:i<N: i++) {
    for (i=0:i<N: i++) {
        av += s[i]:
        av += s[i]:
        av += s[i]:
    }
    }
    }
    printf("%lg\n", av / N):
    printf("%lg\n", av / N):
    printf("%lg\n", av / N):
H
```

```
H
```

```
H
```

```
```

\#include <stdio.h>

```
```

\#include <stdio.h>

```
```

\#include <stdio.h>

```

\section*{Optimization}
- Multiplication vs. Division (not so old computers)
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
int main(int argn,char * argv[])
{
int i,N;
double *s;
double av. rm1;
N=10000000;
s = (double *)calloc(N, sizeof(double));
srand(12345);
rm1 = 1.0 / RAND_MAX;
for (i=0; i<N; i++) {
/* s[i] = (double) rand() * rm1 * rand() * rm1;*/
s[i] = (double) rand() * rand() / RAND_MAX / RAND_MAX;
}
av = 0.0;
for (i=0; i<N; i++) {
av += s[i];
}
printf("%lg\n", av / N);
H

```

Page 7

\section*{Optimization}
- Programming language
- In example C is 20 times faster than python
- On old computers with multiplication is \(20 \%\) faster
- Matlab, Maple, Mathematica are expensive
- Clusters have C, and C++
- Optimization
- Parallelization
- Indexing Careful usage of pointers
- Reformulate operations
- Does not always worth the pain
- gprof

\section*{gprof}

Flat profile:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Each } \mathrm{s}{ }^{2} \\
\%
\end{gathered}
\] & sample count cumulative & as 0.01 self & ds. & self & total & \\
\hline time & seconds & seconds & calls & ms/call & ms/call & name \\
\hline 37.66 & 656.83 & 56.83 & 3248064862 & 0.00 & 0.00 & is_in_community \\
\hline 25.99 & 966.05 & 39.22 & 1000000 & 0.04 & 0.04 & e_erode \\
\hline 11.55 & 113.47 & 17.43 & 21355853 & 0.00 & 0.00 & weighted_random_link \\
\hline 6.33 & 123.03 & 9.55 & 11078805 & 0.00 & 0.00 & weighted_random_link_ban_list \\
\hline 3.02 & -127.58 & 4.55 & 8406648 & 0.00 & 0.01 & e_info \\
\hline 2.77 & 131.75 & 4.18 & & & & main \\
\hline 2.26 & W 135.16 & 3.40 & 197988614 & 0.00 & 0.00 & ct_weight \\
\hline 2.10 & 138.33 & 3.17 & 4 & 792.50 & 792.50 & clear_data \\
\hline 1.85 & -141.12 & 2.79 & 12949626 & 0.00 & 0.00 & e_single \\
\hline 1.73 & -143.74 & 2.62 & 164260875 & 0.00 & 0.00 & ranksz \\
\hline 1.60 & -146.16 & 2.42 & 12774907 & 0.00 & 0.00 & strengthen \\
\hline 0.97 & 7147.62 & 1.46 & 19359356 & 0.00 & 0.01 & communicate \\
\hline 0.88 & -148.94 & 1.33 & 248428917 & 0.00 & 0.00 & is_internet \\
\hline 0.32 & 149.43 & 0.48 & 15380 & 0.03 & 0.03 & random_agent_with_group_sex \\
\hline 0.31 & 149.90 & 0.47 & 2042439 & 0.00 & 0.00 & e_share \\
\hline 0.24 & \(4 \quad 150.25\) & 0.36 & & & & seed3 \\
\hline
\end{tabular}

\section*{Optimization}
- Programming language
- Optimization
- Careful with time
- Too much optimization prevents further development
\begin{tabular}{|l|l|l|l|}
\hline & & \(\rightarrow\) & \\
\hline\(\uparrow\) & & \(\rightarrow\) & \(\uparrow\) \\
\hline & \(\rightarrow\) & \(\uparrow\) & \\
\hline & \(\uparrow\) & \(\rightarrow\) & \\
\hline
\end{tabular}



\section*{Optimization}
- Programming language
- Optimization
- Careful with time
- Too much optimization prevents further development
- Optimize only working code!
- Algorithm
- The war can be won here

Page 11

\section*{Simulations}
- Do what nature does
- Molecular dynamics
- Hydrodynamics

- Make use of statistical physics
- Monte-Carlo dynamics
- Simulate simplified models
- Much smaller codes!


Page 12

\section*{Random numbers}
- Why?
- Ensemble average:
\[
\langle A\rangle=\sum_{i} A_{i} P_{i}^{\mathrm{eq}}
\]

Random initial configurations
- Model: e.g. Monte-Carlo
- Fluctuations
- Sample
- How?


Page 13

\section*{Generate random numbers}
- We need good randomness:
- Correlations of random numbers appear in the results
- Must be fast
- Long cycle
- Cryptography


Page 14

\section*{Random number generators}
- True (Physical phenomena):
- Shot noise (circuit)
- Nuclear decay
- Amplification of noise
- Atmospheric noise (random.org)
- Thermal noise of resistor
- Reverse biased transistor
- Limited speed
- Needed for cryptography
- Pseudo (algorithm):
- Deterministic
- Good for debugging!
- Fast
- Can be made reliable

\section*{Language provided random numbers}

It is good to know what the computer does!
- Algorithm
- Performance
- Precision
- Limit cycle
- Historically a catastrophe
- Seed
- From true random source
- Time
- Manual
- Allows debugging
- Ensures difference

First only uniform random numbers

Page 16

\section*{Multiplicative congruential algorithm}
- Let \(r_{j}\) be an integer number, the next is generated by
\[
r_{j+1}=\left(a r_{j}+c\right) \bmod (m)
\]
- Sometimes only \(k\) bits are used
- Values between 0 and \(m-1\) or \(2^{k}-1\)
- Three parameters \((a, c, m)\).
- If \(m=2^{X}\) is fast. Use AND (\&) instead of modulo (\%).
- Good:
- Historical choice:
\[
a=7^{5}=16807, m=2^{31}-1=2147483647, c=0
\]
- gcc built-in ( \(k=31\) ):
\[
a=1103515245, m=2^{31}=2147483648, c=12345
\]
- Bad:
- RANDU: \(a=65539, m=2^{31}=2147483648, c=0\)

\section*{Tausworth, Kirkpatrick-Stoll generator}
- Fill an array of 256 integers with random numbers
\[
J[k]=J[(k-250) \& 255]^{\wedge} J[(k-103) \& 255]
\]
- Return \(J[k]\), increase \(k\) by one
- Can be 64 bit number
- Extremely fast, but short cycles for certain seeds
XOR function \begin{tabular}{|c||c|c|}
\hline\(\wedge\) & 1 & 0 \\
\cline { 2 - 3 } & 1 & 0 \\
\hline
\end{tabular} 1

Page 18

Tausworth, Kirkpatrick-Stoll generator corrected by Zipf

The one the lecturer uses
- Fill an array of 256 integers with random numbers
\[
J[k]=J[(k-250) \& 255]^{\wedge} J[(k-103) \& 255]
\]

Increase \(k\) by one
\[
J[k]=J[(k-30) \& 255]^{\wedge} J[(k-127) \& 255]
\]
- Return \(J[k]\), increase \(k\) by one
- Extremely fast, reliable also on bit level

General transformation \(x \in[0: 1[\)
\[
x=r /\left(R A N D \_M A X+1\right)
\]

Page 19

\section*{Tests}
- General: e.g. TESTU01
- Diehard tests:
- Birthday spacings (spacing is exponential)
- Monkey tests (random typewriter problem)
- Parking lot test
- Moments: \(m=\int_{0}^{1} \frac{1}{n+1}\)
- Correlation
\[
C_{q, q^{\prime}}(t)=\int_{0}^{1} \int_{0}^{1} x^{q} x^{\prime q^{\prime}} P\left[x, x^{\prime}(t)\right] d x d x^{\prime}=\frac{1}{(q+1)\left(q^{\prime}+1\right)}
\]
- Fourier-spectra
- Fill of d dimensional lattice
- Random walks

Red ones are not always fulfilled!
- Certain Multiplicative congruential generators are bad on bit series distribution, not completely position independent.

\section*{Bit series distribution}

Probability of having \(k\) times the same bit


Fit to the tail for different bit positions show


Fill of \(d\) dimensional lattice
- Generate \(d\) random numbers \(c_{i} \in[0, L]\)
- Set \(x\left[c_{1}, c_{2}, \ldots, c_{d}\right]=1\)
- The Marsaglia effect is that for all congruential multiplicative generators there will be unavailable points (on hyperplanes) if \(d\) is large enough.
- For RANDU \(d=3\)


\section*{Solution for Marsaglia effect}
- Instead of \(d\) random numbers only \(1(x)\)
- Divide it int \(d\) parts
c_1=x\% \(\mathrm{d}, \mathrm{x} /=\mathrm{d}\)
c_2=x\%d, \(x /=d\)
- Better to have \(L=2^{k}\).
- In this case much faster!

General advice: Save time by generating less random numbers

\section*{Random numbers with different distributions}
- Let us have a good random number \(r \in[0,1]\).
- The probability density function is \(P(x)\)
- The cumulative distribution is
\[
D(x)=\int_{-\infty}^{x} P\left(x^{\prime}\right) d x^{\prime}
\]
- Obviously:
\[
P(x)=D^{\prime}(x)
\]
- The numbers \(D^{-1}(x)\) will be distributed according to \(P(x)\)
- \(D^{-1}(x)\) is the inverse function of \(D(x)\) not always easy to get!

\section*{Random numbers with different distributions}

Graphical representation


Page 25

\section*{Box-Müller method}

Normally distributed random numbers
\[
P(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}
\]
- Generate independent uniform \(r_{1}, r_{2} \in(0,1)\)
- \(r_{1}, r_{2}\) cannot be zero!
- Two independent normally distributed random numbers:
\[
\begin{aligned}
& x_{1}=\sqrt{-2 \log r_{1}} \cos 2 \pi r_{2} \\
& x_{2}=\sqrt{-2 \log r_{1}} \sin 2 \pi r_{2}
\end{aligned}
\]
- It uses radial symmetry:
\[
P(x, y)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2}=\frac{1}{\sqrt{2 \pi}} e^{-\left(x^{2}+y^{2}\right) / 2}
\]

\section*{Boundary conditions}
- Real boundary conditions
- Closed (nothing)
- Walls (with temperature)
- Substrate (often too expensive)
- Computer based boundary conditions
- Periodic boundary conditions
- Absorbing (whatever leaves is gone)
- Reflecting (everything is reflected back)

\section*{Periodic boundary conditions}


Page 28

\section*{Periodic boundary conditions \(\rightarrow\) contacts}


\section*{Periodic boundary conditions}
- Infinitely many neighboring cells if long range interactions
- Possibility of self interaction (must be charge neutral)
- General solution: long range interactions are handled in \(k\)-space
- Linear momentum is conserved
- Angular momentum is not conserved


\section*{Periodic boundary conditions}

Distance
```

dx = x[i] - x[j]
if (dx < -Lx/2) dx+=Lx;
if (dx > Lx/2) dx-=Lx;

```


\section*{Periodic boundary conditions deformed box}
- Box is tilted, positions of particles artificially moved
- Homogeneous shear


\section*{Periodic boundary conditions deformed box}

Distance
- Order matters
- Tilted: by \(D_{x y}, D_{x z}, D_{y z}\)
```

dx = x[i] - x[j]
dy = y[i] - y[j]
dz = z[i] - z[j]
if (dz<-Lz/2) { dz+=Lz; dx+=Dxz; dy+=Dyz; }
if (dz > Lz/2) { dz-=Lz; dx-=Dxz; dy-=Dyz; }
if (dy < -Ly/2) { dy+=Ly; dx+=Dxy; }
if (dy> Ly/2) { dy-=Ly; dx-=Dxy; }
if (dx<-Lx/2) dx+=Lx;
if (dx > Lx/2) dx-=Lx;

```


Periodic boundary conditions Lees-Edwards boundary conditions \(\rightarrow\) shear
- Images are shifted
- Different from shear by walls
- Different from box tilt
- Stress propagation is important


Page 34```

