# Simulations in Statistical Physics Course for MSc physics students

Janos Török

Department of Theoretical Physics

November 5, 2013

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

# Directed percolation



# Directed percolation

- More complicated than percolation
- $\blacktriangleright$  3 exponents (correlation lengths in two directions)  $\nu_{\perp},~\nu_{||}$  and (order parameter)  $\beta$

$$\rho(\Delta p, t, L) \sim b^{-\beta/\nu_{\perp}} \rho(b^{1/\nu_{\perp}} \Delta p, t/b^{z}, L/b),$$

with  $z=
u_{||}/
u_{\perp}.$ 

- $eta/
  u_{||}$  as on figure
- z in a large sample
- Critical scaling of finite clusters



# Directed percolation



### Numerical renormalization group

- At the critical point the system is self similar (scale-free)
- It does not matter on which scale we are looking at it.



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うの()

### Numerical renormalization group

As the system gets larger it converges into a fixed point

$$\lim_{n \to \infty} R_n(p) = \begin{cases} 0 & \text{for } 0 \leq p < p_c , \\ c & \text{for } p = p_c , \\ 1 & \text{for } p_c < p \leq 1 \end{cases}$$



Page 6

◆□ > ◆母 > ◆臣 > ◆臣 > ○ 臣 - のへで

# Numerical renormalization group, percolation



probability that the cell is spanned:

$$p' = R(p) = 2p^2(1-p)^2 + 4p^3(1-p) + p^4$$

- In the critical point p' = p.
- Three solutions  $p_0 = 0$ ,  $p_1 = 1$ , and  $p_* = 0.6180$
- Theoretical value  $p_c = 0.5927$

Larger blocks (only numerically possible) give better estimates



Page 8

・ロト・(型・・ヨ・・ヨ・ つへの)



- Input pattern
- Output pattern
- Adaptive wights

Page 9

 Approximating non-linear functions

- Machine learning
- ▶ Pattern recognition
- Handwriting
- Speech recognition



- Input vector I
- Output vector O(I)
- Transition matrix  $W_{ij} \in [-1, 1]$
- Data training:
  - Superwised learning
  - Fitness function, energy:

$$E=T(I)-O(I),$$

where T(I) is the target vector for input I

- Minimize E for available set of  $\{I, I(O)\}$  pairs
- Test goodnes:

Page 10

► Use only part of {I, I(O)} pairs for learning, the rest is for testing.

- Learning methods:
  - Linear regression
  - Genetic algorithm
  - Simulated annealing



# Networks

### Complex networks

- Mathematics: Graphs
- Vertices, nodes, points
- Edges, links, arcs, lines
  - Directed or undirected
  - Loop
  - Multigraph
  - Wighted graphs
  - Connected



イロト イポト イヨト イヨト

э

# Complex networks

| Phenomenon         | Nodes      | Links                  |
|--------------------|------------|------------------------|
| lsing              | Spins      | Interaction(neighbors) |
| Cell metabolism    | Molecules  | Chem. reactions        |
| Sci. collaboration | Scientists | Joint papers           |
| WWW                | Pages      | URL links              |
| Air traffic        | Airports   | Airline connections    |
| Economy            | Firms      | Trading                |
| Language           | Words      | Joint appearance       |

### Complex networks, citations



Page 14

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ \_ 圖 \_ 釣��

# Random Networks

#### Generate networks:

- From data:
  - Phone calls
  - WWW links
  - Biology database
  - Air traffic data
  - Trading data
- Generate randomly
  - ▶ From regular lattice by random algorithm (e.g. percolation)

- Erdős-Rényi graph
- Configurations model
- Barabási-Albert model

# Erdős-Rényi

- P. Erdős, A. Rényi, On random graphs, Publicationes Mathematicae Debrecen, Vol. 6 (1959), pp. 290-297 (cit 789)
- Two variants:
  - 1. G(N, M): N nodes, M links
  - 2. G(N, P): N nodes, links with p probability (all considered)
- Algorithm
  - 1. G(N, M):
    - Choose i and j randomly  $i, j \in [1, N]$  and  $i \neq j$
    - If there is no link between i an j establish one
  - 2. G(N, P): (Like percolation)
    - Take all  $\{i, j\}$  pairs  $(i \neq j)$
    - With probability p establish link between i and j

# Erdős-Rényi

Degree distribution

$$P(k) = \binom{N-1}{k} p^k (1-p)^{N-1-k}$$

▶ For large N and Np =const it is a Poisson distribution

$$P(k) 
ightarrow rac{(np)^k e^{-np}}{k!}$$



# Erdős-Rényi

#### ▶ Real life: Read networks



・ロト ・部ト ・モト ・モト

э

Most networks are different!

# Configuration model

- Get the nodes ready with desired degree distribution
- Connect them randomly
- Self loops, and multiple links are created
- Problems at the end



# Preferential attachment

### Barabási-Albert graph

- Initially a fully connected graph of  $m_0$  nodes
- All new nodes come with m links ( $m \le m_0$ ) m=1 m=2 m=3



- Links are attached to existing nodes with probability proportional to its number of links
- k<sub>i</sub> is the number links of node i, then

$$p_a = rac{k_i}{\sum_j k_j}$$

### Barabási-Albert graph

Degree distribution

$$p(k) \sim k^{-3}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Independent of m!



m = 1

# Scalefree network example: Flight routes



▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

## Scalefree network example: Co-authorship



Page 23

・ロト ・日 ・ モー・ モー・ シック

# Algorithm for Barabási-Albert graph

- 1.  $n = m_0$  number of existing nodes
- 2.  $K = \sum_{i} k_i$  total number of connections
- 3. r random number  $r \in [0, K]$
- 4. Find  $i_{\max}$  for which  $\sum_{j=0}^{i_{\max}} k_j < r$
- 5. If there is no edge then add one between nodes n+1 and  $i_{\max}$

- 6. If node n + 1 has less than m connections go to 3.
- 7. Increase n by 1
- 8. If n < N go to 2.

### Percolation and attack on random networks

- ► Failure: equivalent to percolation: remove nodes at random
- Attack: remove most connected nodes



Percolation and attack on random networks

Efficiency:

$$E(G) = \frac{1}{N(N-1)} \sum_{i \neq j} \frac{1}{t_{ij}}$$

 $t_{ij}$  the shortest path between i and j.

•  $N = 2000, k = 10^4$ 



### Percolation and attack on random networks



Page 27

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで