# Simulations in Statistical Physics <br> Course for MSc physics students 

Janos Török<br>Department of Theoretical Physics

November 5, 2013

Page 1

## Directed percolation

 Page 2

## Directed percolation

- More complicated than percolation
- 3 exponents (correlation lengths in two directions) $\nu_{\perp}, \nu_{\| \mid}$and (order parameter) $\beta$

$$
\rho(\Delta p, t, L) \sim b^{-\beta / \nu_{\perp}} \rho\left(b^{1 / \nu_{\perp}} \Delta p, t / b^{z}, L / b\right)
$$

with $z=\nu_{\| \mid} / \nu_{\perp}$.

- $\beta / \nu_{| |}$as on figure
- $z$ in a large sample
- Critical scaling of finite clusters



## Directed percolation

- Density versus time

- Length/width versus size
- Clusters are fractal

Page 4

## Numerical renormalization group

- At the critical point the system is self similar (scale-free)
- It does not matter on which scale we are looking at it.


$L=4 \quad p=0.7$


Page 5

## Numerical renormalization group

- As the system gets larger it converges into a fixed point

$$
\lim _{n \rightarrow \infty} R_{n}(p)= \begin{cases}0 & \text { for } 0 \leqslant p<p_{c} \\ c & \text { for } p=p_{c} \\ 1 & \text { for } p_{c}<p \leqslant 1\end{cases}
$$



Page 6

## Numerical renormalization group, percolation



- probability that the cell is spanned:

$$
p^{\prime}=R(p)=2 p^{2}(1-p)^{2}+4 p^{3}(1-p)+p^{4}
$$

- In the critical point $p^{\prime}=p$.
- Three solutions $p_{0}=0, p_{1}=1$, and $p_{*}=0.6180$
- Theoretical value $p_{c}=0.5927$
- Larger blocks (only numerically possible) give better estimates


## Neural networks



Page 8

## Neural networks



- Input pattern
- Output pattern
- Adaptive wights
- Approximating non-linear
- Machine learning
- Pattern recognition
- Handwriting
- Speech recognition
 functions


## Neural networks

- Input vector 1
- Output vector $O(I)$
- Transition matrix $W_{i j} \in[-1,1]$
- Data training:
- Superwised learning
- Fitness function, energy:

$$
E=T(I)-O(I),
$$

where $T(I)$ is the target vector for input $I$

- Minimize $E$ for available set of $\{I, I(O)\}$ pairs
- Test goodnes:
- Use only part of $\{I, I(O)\}$ pairs for learning, the rest is for testing.


## Neural networks

- Learning methods:
- Linear regression
- Genetic algorithm
- Simulated annealing


Page 11

## Networks

Complex networks

- Mathematics: Graphs
- Vertices, nodes, points
- Edges, links, arcs, lines
- Directed or undirected
- Loop
- Multigraph
- Wighted graphs
- Connected


Page 12

## Complex networks

| Phenomenon | Nodes | Links |
| :--- | :--- | :--- |
| Ising | Spins | Interaction(neighbors) |
| Cell metabolism | Molecules | Chem. reactions |
| Sci. collaboration | Scientists | Joint papers |
| WWW | Pages | URL links |
| Air traffic | Airports | Airline connections |
| Economy | Firms | Trading |
| Language | Words | Joint appearance |

## Complex networks, citations



## Random Networks

Generate networks:

- From data:
- Phone calls
- WWW links
- Biology database
- Air traffic data
- Trading data
- Generate randomly
- From regular lattice by random algorithm (e.g. percolation)
- Erdős-Rényi graph
- Configurations model
- Barabási-Albert model


## Erdős-Rényi

- P. Erdős, A. Rényi, On random graphs, Publicationes Mathematicae Debrecen, Vol. 6 (1959), pp. 290-297 (cit 789)
- Two variants:

1. $G(N, M): N$ nodes, $M$ links
2. $G(N, P)$ : $N$ nodes, links with $p$ probability (all considered)

- Algorithm

1. $G(N, M)$ :

- Choose $i$ and $j$ randomly $i, j \in[1, N]$ and $i \neq j$
- If there is no link between $i$ an $j$ establish one

2. $G(N, P)$ : (Like percolation)

- Take all $\{i, j\}$ pairs $(i \neq j)$
- With probability $p$ establish link between $i$ and $j$


## Erdős-Rényi

- Degree distribution

$$
P(k)=\binom{N-1}{k} p^{k}(1-p)^{N-1-k}
$$

- For large $N$ and $N p=$ const it is a Poisson distribution

$$
P(k) \rightarrow \frac{(n p)^{k} e^{-n p}}{k!}
$$

$$
p=0
$$

(a)

$p=0.1$
(b)


$$
p=0.2
$$

(c)

## Erdős-Rényi

- Real life: Read networks


Most networks are different!

## Configuration model

- Get the nodes ready with desired degree distribution
- Connect them randomly
- Self loops, and multiple links are created
- Problems at the end


11111222233334445566


Page 19

## Preferential attachment

## Barabási-Albert graph

- Initially a fully connected graph of $m_{0}$ nodes
- All new nodes come with $m$ links ( $m \leq m_{0}$ ) $\mathrm{m}=1 \quad \mathrm{~m}=2 \quad \mathrm{~m}=3$

- Links are attached to existing nodes with probability proportional to its number of links
- $k_{i}$ is the number links of node $i$, then

$$
p_{a}=\frac{k_{i}}{\sum_{j} k_{j}}
$$

## Barabási-Albert graph

- Degree distribution

$$
p(k) \sim k^{-3}
$$

- Independent of $m$ !

$$
m=1
$$

Page 21

## Scalefree network example: Flight routes



Page 22

## Scalefree network example: Co-authorship



Page 23

## Algorithm for Barabási-Albert graph

1. $n=m_{0}$ number of existing nodes
2. $K=\sum_{j} k_{j}$ total number of connections
3. $r$ random number $r \in[0, K]$
4. Find $i_{\text {max }}$ for which $\sum_{j=0}^{i_{\max }} k_{j}<r$
5. If there is no edge then add one between nodes $n+1$ and $i_{\max }$
6. If node $n+1$ has less than $m$ connections go to 3 .
7. Increase $n$ by 1
8. If $n<N$ go to 2 .

Page 24

## Percolation and attack on random networks

- Failure: equivalent to percolation: remove nodes at random
- Attack: remove most connected nodes


Page 25

## Percolation and attack on random networks

- Efficiency:

$$
E(G)=\frac{1}{N(N-1)} \sum_{i \neq j} \frac{1}{t_{i j}}
$$

$t_{i j}$ the shortest path between $i$ and $j$.

- $N=2000, k=10^{4}$


Page 26

## Percolation and attack on random networks



Page 27

