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Directed percolation
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Directed percolation

I More complicated than percolation

I 3 exponents (correlation lengths in two directions) ν⊥, ν|| and
(order parameter) β

ρ(∆p, t, L) ∼ b−β/ν⊥ρ(b1/ν⊥∆p, t/bz , L/b),

with z = ν||/ν⊥.

I β/ν|| as on �gure

I z in a large sample

I Critical scaling of �nite
clusters

Page 3



Directed percolation

I Density versus time

I Length/width versus size

I Clusters are fractal
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Numerical renormalization group

I At the critical point the system is self similar (scale-free)

I It does not matter on which scale we are looking at it.
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Numerical renormalization group

I As the system gets larger it converges into a �xed point
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Numerical renormalization group, percolation

I probability that the cell is spanned:

p′ = R(p) = 2p2(1− p)2 + 4p3(1− p) + p4

I In the critical point p′ = p.
I Three solutions p0 = 0, p1 = 1, and p∗ = 0.6180
I Theoretical value pc = 0.5927
I Larger blocks (only numerically possible) give better estimates
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Neural networks
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Neural networks

I Input pattern

I Output pattern

I Adaptive wights

I Approximating non-linear
functions

I Machine learning

I Pattern recognition

I Handwriting

I Speech recognition
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Neural networks

I Input vector I

I Output vector O(I )

I Transition matrix Wij ∈ [−1, 1]
I Data training:

I Superwised learning
I Fitness function, energy:

E = T (I )− O(I ),

where T (I ) is the target vector for input I
I Minimize E for available set of {I , I (O)} pairs

I Test goodnes:
I Use only part of {I , I (O)} pairs for learning, the rest is for

testing.
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Neural networks

I Learning methods:
I Linear regression
I Genetic algorithm
I Simulated annealing
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Networks

Complex networks

I Mathematics: Graphs

I Vertices, nodes, points

I Edges, links, arcs, lines
I Directed or undirected
I Loop
I Multigraph
I Wighted graphs
I Connected
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Complex networks

Phenomenon Nodes Links

Ising Spins Interaction(neighbors)

Cell metabolism Molecules Chem. reactions

Sci. collaboration Scientists Joint papers

WWW Pages URL links

Air tra�c Airports Airline connections

Economy Firms Trading

Language Words Joint appearance
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Complex networks, citations
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Random Networks

Generate networks:

I From data:
I Phone calls
I WWW links
I Biology database
I Air tra�c data
I Trading data

I Generate randomly
I From regular lattice by random algorithm (e.g. percolation)
I Erd®s-Rényi graph
I Con�gurations model
I Barabási-Albert model
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Erd®s-Rényi

I P. Erd®s, A. Rényi, On random graphs, Publicationes
Mathematicae Debrecen, Vol. 6 (1959), pp. 290-297 (cit 789)

I Two variants:

1. G (N,M): N nodes, M links
2. G (N,P): N nodes, links with p probability (all considered)

I Algorithm
1. G (N,M):

I Choose i and j randomly i , j ∈ [1,N] and i 6= j
I If there is no link between i an j establish one

2. G (N,P): (Like percolation)
I Take all {i , j} pairs (i 6= j)
I With probability p establish link between i and j
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Erd®s-Rényi

I Degree distribution

P(k) =

(
N − 1
k

)
pk(1− p)N−1−k

I For large N and Np =const it is a Poisson distribution

P(k)→ (np)ke−np

k!
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Erd®s-Rényi

I Real life: Read networks

Most networks are di�erent!
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Con�guration model

I Get the nodes ready with
desired degree distribution

I Connect them randomly

I Self loops, and multiple
links are created

I Problems at the end
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Preferential attachment

Barabási-Albert graph

I Initially a fully connected graph of m0 nodes

I All new nodes come with m links (m ≤ m0)

I Links are attached to existing nodes with probability
proportional to its number of links

I ki is the number links of node i , then

pa =
ki∑
j kj
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Barabási-Albert graph

I Degree distribution
p(k) ∼ k−3

I Independent of m!

m = 1
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Scalefree network example: Flight routes

Page 22



Scalefree network example: Co-authorship
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Algorithm for Barabási-Albert graph

1. n = m0 number of existing nodes

2. K =
∑

j kj total number of connections

3. r random number r ∈ [0,K ]

4. Find imax for which
∑imax

j=0 kj < r

5. If there is no edge then add one between nodes n + 1 and imax

6. If node n + 1 has less than m connections go to 3.

7. Increase n by 1

8. If n < N go to 2.
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Percolation and attack on random networks

I Failure: equivalent to percolation: remove nodes at random
I Attack: remove most connected nodes
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Percolation and attack on random networks

I E�ciency:

E (G ) =
1

N(N − 1)

∑
i 6=j

1

tij

tij the shortest path between i and j .
I N = 2000, k = 104
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Percolation and attack on random networks
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