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Fitting

Linear regression

y = α + βx

β̂ =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2
=

xy − x̄ ȳ

x2 − x̄2

α̂ = ȳ − β̂x̄

ρ =
xy√
x̄ ȳ

(1)
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Fitting

Houbble original �t:
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Fitting

Houbble change in time:
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Fitting

Houbble change in time:

Page 5



Finite size scaling

I Correlation length
ξ ∝ |T − Tc |−ν

I If L is �nite ξ cannot be larger than L

L ∝ |T (L)− Tc |−ν

I The position and the width of the transition

|T (L)− Tc | ∝ L−1/ν

σ(L) ∝ L−1/ν
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Ising model susceptibility
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Three parameter �t: Ising model

I Theory: ν = 1, Tc ' 2.27
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Finite size scaling: Ising model

I Theory: ν = 1, Tc ' 2.27

Page 9



Metropolis algorithm

(Metropoli-Rosenbluth-Rosenbluth-Teller-Teller=MR2T2 algorithm)

I Sequence of con�gurations using a Markov chain

I Con�guration is generated from the previous one

I Transition probability: equilibrium probability

I Detailed balance:

P(x)P(x → x ′) = P(x ′)P(x ′ → x)

I Rewritten:
P(x → x ′)

P(x ′ → x)
=

P(x ′)

P(x)
= e−β∆E

I Only the ration of transition probabilities are �xed
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Metropolis algorithm

(Metropoli-Rosenbluth-Rosenbluth-Teller-Teller=MR2T2 algorithm)

P(x → x ′)

P(x ′ → x)
=

P(x ′)

P(x)
= e−β∆E

I Metropolis:

P(x → x ′) =

{
e−β∆E

if∆E > 0

1 otherwise

I Symmetric:

P(x → x ′) =
e−β∆E

1 + e−β∆E
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Metropolis algorithm

Recipes:

I Choose an elementary step x → x ′

I Calculate ∆E

I Calculate P(x → x ′)

I Generate random number r ∈ [0, 1]

I If r < P(x → x ′) then new state is x ′; otherwise it remains x

I Increase time

I Measure what you want

I Restart
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Metropolis algorithm, proposal probability

Transition probability:

P(x → x ′) = g(x → x ′)A(x → x ′)

I g(x → x ′): proposal probability
I Generally uniform
I If di�erent interactions are present then it must be

incorporated

I A(x → x ′): acceptance probability
I Metropolis
I Symmetric
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Metropolis, proof

State �ow
Let E > E ′:

I x → x ′

P(x)g(x → x ′)A(x → x ′) = P(x)

I x ′ → x

P(x ′)g(x ′ → x)A(x ′ → x) = P(x ′)e−β∆E

I In equilibrium they are equal:

P(x)

P(x ′)
= eβ∆E

I What we wanted.
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Do we need optimization?

I Correlation lenth ξ

I Characteristic time τchar
I Dynamical exponent z

τchar ∝ ξz

I For 2d Ising model z ' 2.17

I Simulation time:
tCPU ∼ Ld+z

We need more e�ective algorithms!
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Multri-spin algorithm for 2d Ising model

History...

I Operations:
I Check if neighbor is parallel: XOR
I sum of antiparallel spins: sum of previous XOR

I Result: discrete energy di�erence can be 0, 1, 2, 3, 4
Metropolis 0 1 2 3 4

∆E/J 8 4 0 4 8

P(x → x ′) exp(−8β) exp(−4β) 0 0 0

I (of course P(x → x ′) in array)

I 4 bit is enough to store result

I Use every fourth bit to store a spin.
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Multri-spin algorithm for 2d Ising model

I Historical solution
I Every fourth bit in the integer is a spin
I To get neighbors bit shift operation must be made
I We get sizeof(int)/4 bits at once
I Go through the sample in a typewriter style
I Nowdays may even be slower as array operations are fast

I Use it for ensemble average
I One member of the array contains the spin of one position
I Multiple simulation instances
I With Metropolis algorithm few random numbers are needed

(at high T )

I Does not really matter only factors can be won, tCPU ∼ Ld+z

still holds
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Cluster algorithm

I Flip more spins together. How?

I The solution � based on an old relationship between the
percolation and the Potts model � is that we consider the spin
con�guration as a correlated site percolation problem

I Ising cluster: a percolating cluster of parallel spins

I Ising droplets: a percolating subset of an Ising cluster
pB = 1− exp(−2βJ)
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Swendsen-Wang algorithm

I Take an Ising con�guration

I With probability pB = 1− exp(−2βJ) make connection
between parallel spins

I Identify the droplets by Hoshen-Kopelman algorithm

I Flip each droplet with probability: 1/2 (h = 0)

I Repeat it over
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Wol� algorithm

1. Add a random spin to a list of active spins

2. Take a spin from the active list

3. Add each parallel neighboring (not yet visited) spin with
probability pB = 1− exp(−2βJ) to the list of active spins

4. If list of active spins is not empty go to 2.

5. Flip all active spins
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Wol� code
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Wol� code

Page 22



Wol� code
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Wol� code
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Comparison magnetization
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Comparison magnetization
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Comparison magnetization
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Comparison magnetization
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Comparison magnetization
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Wol� algorithm proof

I Energy:
I Exterior
I Interior
I Boundary

I We modify g(x → x ′) to be exactly exp(−∆Eβ) thus
P(x → x ′) = 1

I Good for parallelization!
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Other ensembles

Microcanonical ensemble

I Daemon with bag with tolerance (both directions)
I Pick a move, and calculate energy change
I If energy change does not �t into bag reject it
I Otherwise add energy change to bag

I In case of conservation the dynamic exponent z is larger!
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Other ensembles

Conserved order parameter: Kawasaki dynamics

I Elementary step:
I Exchange up-down spin pairs (can be anywhere)

simultaneously
I Apply Metropolis to net energy change!
I Di�usive dynamics is more physical: pick neighboring spins

I In case of conservation the dynamic exponent z is larger!
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