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Percolation
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Percolation

Behavior of connected cluster

I Site percolation

I Bond percolation
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Percolation theory

Questions:

1. Is there a connected path from the top to the bottom?

2. Is there an in�nite cluster in in�nite systems?

3. What is the condition for it?

4. How many in�nite clusters are there?

Answers:

1. Depending on the parameters with certain probability

2. Depending on the parameters yes or no

3. There is a critical site, bond density.

4. Only 1!
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Percolation model

Bond [site] percolation

I Let us have a lattice (network)

I Each bond [site] is occupied with probability p

I (unoccupied with probability 1− p)

I A cluster is a set of sites connected by occupied bonds
[A cluster is a set of occupied sites]

Numerical task: �nd clusters
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Percolation model
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Hoshen-Kopelman Algorithm

I Identify clusters

I Visit all sites

I Mark them with numbers
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Hoshen-Kopelman Algorithm

I Site percolation

I Helical boundary conditions

I Go through site in typewriter style

I Check left and above
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Hoshen-Kopelman Algorithm
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Hoshen-Kopelman Algorithm
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Hoshen-Kopelman Algorithm
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Hoshen-Kopelman Algorithm

I Go through lattice as typewriter

I Check neighbors

I Resolve con�icts by linking clusters together

I Original trick: use link[] array for cluster size measure
I link[] positive: number of sites in the cluster
I link[] negative: cluster is linked to on other cluster
I Not necessary faster than a seperate arrey for size
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Percolation on networks (graphs)

I Network is de�ned by nodes and links

I Two arrays:
I node[] list of nodes
I link[i][] list of links of node i
I link[i][j] is a link between i and j

I Cluster: nodes connected with links

I Links can be directed link[i][j] is a link from i → j
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Stack (Verem � Hole/Pitfall)

I Last in forst out (LIFO)

I Code:

I Error handling?

I Size of the stack?
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Algorithm percolation on networks (graphs)

1. Go through each node

2. Put node in the stack

3. Get a node from the stack

4. Go through each unmarked link of the node

5. Put other end of links in the stack if it is not marked

6. Mark nodes

7. If the stack not empty Go to 3.

8. If the stack empty Go to 1.
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Algorithm percolation on networks (graphs)
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Algorithm percolation on networks (graphs)
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Result
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Determine pc

I From order parameter:

I Increase and decrease p by p/2 to converge to pc

I Use the monotonity of the percolation

I Same random number sequence can be generated!
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Monotonity
Not always true!
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Ising-model

I Spins
I Interact with extrenal �eld hi

I Interact with neighbors with coe�. Jij

I The Hamiltonian:

H(σ) = −
∑
〈i j〉

Jijσiσj − µ
∑
i

hiσi

I Order parameter magnetization

M =
∑
i

σi
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2D Ising-model

I 2 dimensions

I Homogeneous interaction: Jij = J

I No external �eld (for the time being) h = 0
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Importance sampling

I Given a Hamiltonian H(q,p)

I We ask for the time average of a dynamics quantity at
temperature T

Ā =

∫
A(q,p)Peq(q,p,T )dqdp

I In the canonical ensemble

Peq(q,p,T ) =
1

Z
e−βH(q,p)

I If A depends only on the energy (often the case):

Ā =

∫
A(E )ω(E )Peq(E ,T )dE

Importance sampling is needed!
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Importance sampling

I ω(E )Peq(E ,T ) has a very sharp peak (for large N)

I System spends most of its time in equilibrium

I Importance sampling:

Generate con�gurations with the equilibrium probability

I if con�gurations are chosen accordingly, the for K
measurements:

Ā ' 1

K

K∑
i=1

Ai

How togenerate equilibrium con�gurations?
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Metropolis algorithm

(Metropoli-Rosenbluth-Rosenbluth- Teller-Teller=MR2T2

algorithm)

I Sequence of con�gurations using a Markov chain

I Con�guration is generated from the previous one

I Transition probability: equilibrium probability

I Detailed balance:

P(x)P(x → x ′) = P(x ′)P(x ′ → x)

I Rewritten:
P(x → x ′)

P(x ′ → x)
=

P(x ′)

P(x)
= e−β∆E

I Only the ration of transition probabilities are �xed
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Characteristic time

I Equilibrium: system is stationary.

I We can measure after relaxation time

I New measurement after correlation time

φEE (t) =
〈E (t ′)E (t ′ + t)〉 − 〈E 〉2

〈E 2〉 − 〈E 〉2
, τ =

∫ ∞
0

φEE (t)dt

I Sample with intervals ∆t > τ
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Metropolis algorithm

Recipes:

I Choose an elementary step x → x ′

I Calculate ∆E

I Calculate P(x → x ′)

I Generate random number r ∈ [0, 1]

I If r < P(x → x ′) then new state is x ′; otherwise it remains x

I Increase time

I Measure what you want

I Restart
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Finite size e�ects
Magnetization 2d lattice Ising model

I Determine critical temperature

I Determine critical exponents

I System size dependence???
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Finite size scaling

I Correlation length
ξ ∝ |T − Tc |−ν

I If L is �nite ξ cannot be larger than L

L ∝ |T (L)− Tc |−ν

I The position and the width of the transition

|T (L)− Tc | ∝ L−1/ν

σ(L) ∝ L−1/ν
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Three parameter �t: Ising model

I Theory: ν = 1, Tc ' 2.27
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Finite size scaling: Ising model

I Theory: ν = 1, Tc ' 2.27
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