Simulations in Statistical Physics Course for MSc physics students

Janos Török

Department of Theoretical Physics

October 1, 2013

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Molecular dynamics

Program:

- Have an algorithm to calculate forces
- Get list of interacting particles
- Determine accelerations and velocities; step particles

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Set temperature

Temperature

Definition:

- Encyclopedia Britannica, Wikipedia:
 "A temperature is a numerical measure of hot or cold."
- Thermodynamics: Second law of thermodynamics & Carnot engine

$$\delta Q = TdS$$

$$\eta_{\max} = \eta_{Carnot} = 1 - T_C/T_H$$

Statistical physics:

$$\beta \equiv \frac{1}{k_B} \left(\frac{\partial S}{\partial E} \right)_{V,N} = \frac{1}{k_B T}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うへぐ

Temperature is a measure of the random submicroscopic motions and vibrations of the particle constituents of matter.

The average kinetic energy per particle degree of freedom is

$$\bar{E} = \frac{1}{2}k_B T$$

Molecular dynamics conserves only the *total* energy!

Task: Control kinetic energy!

Setting temperature

Experiment

- Environment
- Mixing \rightarrow uniform temperature
- Simulation
 - Control the kinetic energy (velocities)
 - $\blacktriangleright \ \mbox{Mixing} \rightarrow \mbox{Maxwell-Boltzmann distribution}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Nosé-Hoover thermostat

Original Hamiltonian

$$H_0 = \sum_i \frac{\mathbf{p}_i^2}{2m_i} + U(\mathbf{q})$$

Heatbath in the Hamiltonian:

$$H_n = \sum_i \frac{\mathbf{p}'_i^2}{2m_i} + U(\mathbf{q}') + \frac{p_s^2}{2Q} + gk_B T \log(s)$$

- Extra degree of freedom s.
- \blacktriangleright Q "mass" related to s
 ightarrow controls the speed of convergence
- ▶ g = 3N the number degrees of freedom
- p' and q' are virtual coordinates

Nosé-Hoover thermostat

Virtual coordinates, vs. original ones:

$$\mathbf{p} = \mathbf{p}'$$

 $\mathbf{q} = \mathbf{q}'/s$
 $t = \int \frac{1}{s} dt'$

Solution of the new Hamiltonian:

$$\xi = \dot{s}/s = P_s/Q$$

$$\dot{q} = \frac{p}{m}$$

$$\dot{p}_i = -\frac{\partial U}{\partial q_i} - \xi p_i$$

$$\dot{\xi} = \frac{1}{Q} \left(\sum_i \frac{\dot{p}_i}{m_i} - gk_B T \right)$$

Molecular dynamics

- Create sample
 - Crystal
 - Random deposition
 - Distorted crystal
- Temperate sample
- Make test
- Collect data
 - Data size: e.g. $N = 10^4$, $t = 10^6$ small simulation:

- 1 hour on 1 core PC
- 3 doubles/atom \rightarrow 24 bytes/atom/timesteps
- Result 2.4 10¹¹ bytes = 240 Gigabytes

Alternatives

Event Driven Dynamics

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

- Contact Dynamics
- Kinetic Monte Carlo

Event driven dynamics

- Hard core interactions
- Interactions short in time compared to flight
- (MD needs \sim 20 timesteps per collision, overlap of $10^{-3}d$)
- Integrable path ightarrow do it

Event driven algorithm

- Particles: $\mathbf{x}_i(t)$, $\mathbf{v}_i(t)$, $\boldsymbol{\omega}_i(t)$, \mathbf{r}_i
- Calculate collision time: Let $\mathbf{d}_{ij} = \mathbf{x}_i \mathbf{x}_j$, Then

$$\tau_{ij} = \frac{|\mathbf{d}_{ij}|^2}{(\mathbf{v}_i - \mathbf{v}_j)\mathbf{d}_{ij}}$$

- Order collision times, get the smallest $\tau_c = \min_{ij}(\tau_{ij})$
- Go to time $t + \tau_c$: $\mathbf{x}_i(t + \tau_c)$
- Calculate velocities after collision $\mathbf{v}_i(t + \tau_c)$ (may be hard...)
- Restart loop

Next time:

- Calculate collision time only with i, j
- Dynamic list, change only newly calculate collision times

Inelastic collapse

- Coefficient of restitution $r = v_n(t_c+)/v_n(t_c-)$
- Energy is lost in an exponential way (Ping Pong)
- Infinite collisions in finite time
- ▶ Solution $\rightarrow r = 1$ if collisions occur more frequently than a parameter t_{cont} , the contact duration
- Contact \rightarrow small vibration :-(well...)

ヘロト ヘヨト ヘヨト ヘ

Contact dynamics

- Perfectly rigid particles
- Constraints
- Implicit forces

$$\mathbf{v}_i(t + \Delta t) = \mathbf{v}_i(t) + rac{1}{m_i}\mathbf{F}_i(t + \Delta t)\Delta t$$

 $\mathbf{x}_i(t + \Delta t) = \mathbf{x}_i(t) + \mathbf{v}_i(t + \Delta t)\Delta t$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Contact dynamics, force calculation

Two particles with gap g

$$\begin{split} \text{if} \quad \mathcal{V}^{\text{free}}{}_{n}\Delta t + g^{\text{pos}} > 0 \\ \text{then} \quad \left\{ \vec{\mathcal{R}}^{\text{new}} = 0 & (\text{no contact}) \right. \\ \\ \text{else} \quad \left\{ \begin{array}{l} \mathcal{R}^{\text{new}}_{n} = -\frac{1}{\Delta t} m_{n} \left(\frac{g^{\text{pos}}}{\Delta t} + \mathcal{V}^{\text{free}}_{n} \right) \\ \vec{\mathcal{R}}^{\text{new}}_{t} = -\frac{1}{\Delta t} m_{t} \vec{\mathcal{V}}^{\text{free}}_{t} \\ \end{array} \right. \\ \\ \text{if} \quad \left| \vec{\mathcal{R}}^{\text{new}}_{t} \right| > \mu \mathcal{R}^{\text{new}}_{n} \\ \\ \text{then} \quad \left\{ \vec{\mathcal{R}}^{\text{new}}_{t} = \mu \mathcal{R}^{\text{new}}_{n} \frac{\vec{\mathcal{R}}^{\text{new}}_{t}}{\left| \vec{\mathcal{R}}^{\text{new}}_{t} \right|} & (\text{sliding contact}) \\ \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Iterative solver

- Updates:
 - ► Parallel: calculate all contacts with old values then change to new at once → serious instabilities
 - Serial: update contacts one-by-one in random order

Page 15

Particle chain

Page 16

One iteration step:

$$\mathcal{R}_{i}^{\mathrm{new}} = \frac{1}{2} \left(\mathcal{R}_{i-1}^{\mathrm{new}} + \mathcal{R}_{i+1}^{\mathrm{new}} \right),$$

- Discretized one-dimensional diffusion equation
- Model of rigid particles \rightarrow elastic
- Elasticity depends on the number of iterations

Molecular versus Contact dynamics

Limit

Page 17

- Particle sits in a potential well for ages
- ▶ What to do?

メロト メポト メヨト ノヨ

- Long lasting steady state positions
- Slow thermally activated processes
- Infrequent-event system

Solution:

Consider only jumps between neighboring energy wells

● ◆ 🖓 ▶ - ◆

• Probability of jump $P \sim \exp(-\beta E_b)$

• Rate of jump
$$i \to j$$
, $k_{ij} = E_b$.

- Get all possible rates k_i
- Calculate the cumulative function $K = \sum_i k_i$
- Get a uniform random number u (between 0 and 1)
- Execute the event *i* for which $\sum_{j=1}^{i} k_j \ge Ku > \sum_{j=1}^{i-1} k_j$
- ► Get new uniform random number u' (between 0 and 1)
- Update time to $t = t + \Delta t$, $\Delta t = -\log(u')/k_i$
- Recalculate rates, which have changed
- Restart loop

Monte Carlo

Why Monte Carlo? \rightarrow Random numbers play big role!

- Rates
 - Physics
 - Molecular dynamics
- Must include all rates!
- Used for:
 - Surface diffusion
 - Surface growth
 - Syntering
 - Domain evolution

Example....

Methods

- Molecular Dynamics
 - General
- Event Driven Dynamics
 - Hard objects, at low density
- Contact Dynamics
 - Rigid particles
- Kinetic Monte Carlo
 - Infrequent events, bonded particles

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Parallelization

- ► Why?
 - The speed of one core processor is limited
 - Larger system sizes
 - Multi-core processors
 - On multi-core system inter-processor data change is fast

- Why not?
 - Computing power is lost
 - Much more code development
 - Very often ensemble average is needed
 - Inter-computer communication is terribly slow

RAM $ightarrow \sim$ 15GB/s, Ethernet 125MB/s, Infiniband \sim 1GB/s

Parallelization (Bird flocking model)

Parallelization

Page 26

Molecular dynamics

- Short range interactions: Box must be duplicated, Verlet in parallel
- Long range: Parallel fast Fourier transformation
- Contact dynamics
 - Short range interactions: Box must be duplicated, Iteration in parallel

- Event Driven Dynamics
 - List must be global, no way!
- Kinetic Monte Carlo
 - List must be global, no way!

Efficiency of parallelization

- Large systems are needed
- Boundary must be minimal

N = 32000 atoms

N = 32000 atoms/processor

Domain decomposition

イロト イポト イヨト イヨト

э

- Calculate time spent in a branch
- Move line if necessary
- Lower in tree (up in Fig), larger the mass
- Only rarely, data transfer is expensive