Simulations in Statistical Physics Course for MSc physics students

Janos Török

Department of Theoretical Physics

September 24, 2013

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ● ● ● ●

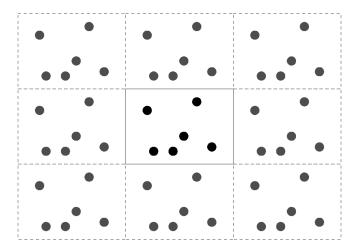
Boundary conditions

Real boundary conditions

- Closed (nothing)
- Walls (with temperature)
- Substrate (often too expensive)
- Computer based boundary conditions
 - Periodic boundary conditions
 - Absorbing
 - Reflecting

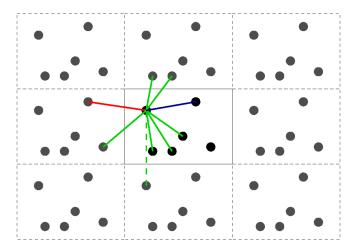
Periodic boundary conditions

Page 3



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − 釣�?

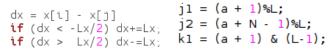
Periodic boundary conditions \rightarrow contacts

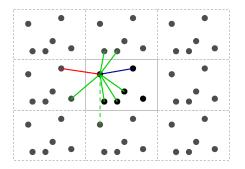


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

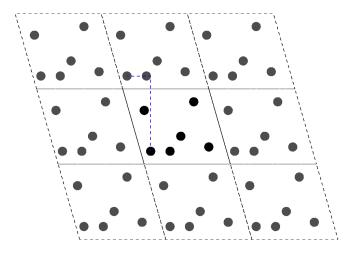
Periodic boundary conditions

Distance





Periodic boundary conditions deformed box



Page 6

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

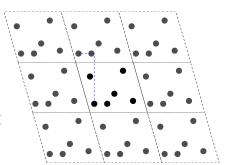
Periodic boundary conditions deformed box

Distance

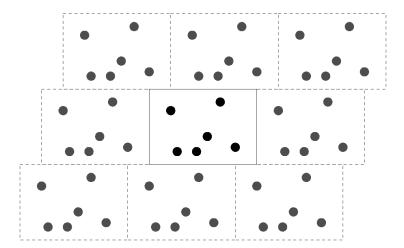
Page

 deformation in xy, xz, yz directions

dx	= ×[[i]	- ×[j]]			
dy	= y[[i]	- y[j]]			
dz	= Z	[i]	- z[j]]			
ίf	(dz	<	-Lz/2)	{ dz+=Lz;	dx+=Dxz;	dy+=Dyz;	}
ìf	(dz	>	Lz/2)	{ dz-=Lz;	dx-=Dxz;	dy-=Dyz;	}
ίf	(dy	<	-Ly/2)	{ dy+=Ly;	dx+=Dxy;	}	
ìf	(dy	>	Ly/2)	{ dy-=Ly;	dx-=Dxy;	}	
ίf	(dx	<	-Lx/2)	dx+=Lx;			
ίf	(dx	>	Lx/2)	dx-=Lx;			



Periodic boundary conditions Lees-Edwards boundary conditions \rightarrow shear



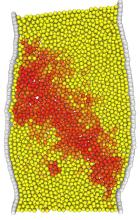
Page

8

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Molecular dynamics

MD: Molecular dynamics DEM: Discrete element method



Page

9

Molecular dynamics

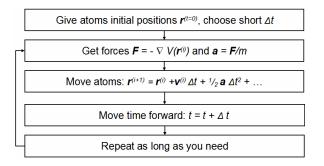
Simulate nature

10

Page

Solve Newton's equation of motion

$$m_i \ddot{\mathbf{r}}_i = \mathbf{f}_i = \mathbf{f}_i^{\text{ext}} + \sum_j \mathbf{f}_{ij}^{\text{int}}, \qquad i, j = 1, 2 \dots N$$



Application of molecular dynamics

- Molecular systems (classic potentials, temperature)
 - Biophysics
 - Structural biology
 - Glasses
 - Amorphous materials
 - Liquids
- Granular materials (hard core, dissipative)
 - Stones, seeds, pills
 - Railbed
- Pedestrians

Page 11

Astrological systems (conservative, large scale)

Program

- Have an algorithm to calculate forces
- Get list of interacting particles
- Determine accelerations and velocities; step particles
- (Set temperature)

Forces

Internal forces

Pair potential:

$$\mathbf{f}_{ij}^{\mathsf{int}} = -\mathbf{f}_{ji}^{\mathsf{int}} = -
abla V(r_{ij})$$

Many body potentials (molecular bonds)

$$\mathbf{f}_{ijk}^{\mathsf{int}} = \mathbf{F}(\mathbf{r}_i, \mathbf{r}_j, \mathbf{r}_k)$$

e.g. 3-body Stillinger-Weber potential:

$$E = \sum_{i} \sum_{j>i} \phi_2(r_{ij}) + \sum_{i} \sum_{j \neq i} \sum_{k>j} \phi_3(r_{ij}, r_{ik}, \theta_{ijk})$$

$$\phi_2(r_{ij}) = A_{ij}\epsilon_{ij} \left[B_{ij} (\frac{\sigma_{ij}}{r_{ij}})^{p_{ij}} - (\frac{\sigma_{ij}}{r_{ij}})^{q_{ij}} \right] \exp\left(\frac{\sigma_{ij}}{r_{ij} - a_{ij}\sigma_{ij}}\right)$$

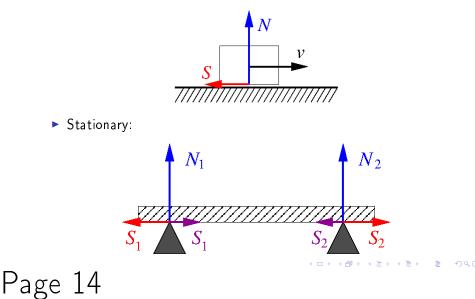
$$\phi_3(r_{ij}, r_{ik}, \theta_{ijk}) = \lambda_{ijk}\epsilon_{ijk} \left[\cos \theta_{ijk} - \cos \theta_{0ijk} \right]^2 \exp\left(\frac{\gamma_{ij}\sigma_{ij}}{r_{ij} - a_{ij}\sigma_{ij}}\right) \exp\left(\frac{\gamma_{ik}\sigma_{ik}}{r_{ik} - a_{ik}\sigma_{ik}}\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Friction forces (next slide...)
 Page 13

Friction forces

Moving:

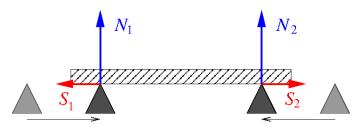


Friction forces

- Position is not enough to set friction forces
- No movement \rightarrow no friction forces
- Solution:

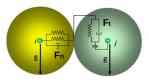
We need history:

15



Contact history

Page



- Position is not enough to set friction forces
- Normal force:

16

$$\mathbf{F}_n = k_n \delta \mathbf{n}_{ij} - m_{\rm eff} \gamma_n \Delta \mathbf{v}_n$$

Tangential force:

$$\mathbf{F}_{t} = k_{t} \Delta \mathbf{s}_{t} + m_{\text{eff}} \gamma_{t} \Delta \mathbf{v}_{t}$$
$$\Delta \mathbf{s}_{t} = \mathbf{n}_{t} \int_{t_{c}}^{t} \left\{ \Delta \mathbf{v}_{t}(t') + \left[\omega_{i}(t') r_{i} - \omega_{j}(t') r_{j} \right] \right\} dt'$$

- Limit Δs_t to satisfy $|F_t| \leq \mu F_n$
- k stiffness, γ damping (critical)

Program

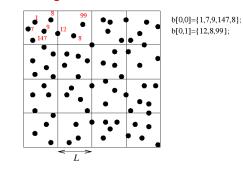
- Have an algorithm to calculate forces
- Get list of interacting particles
- Determine accelerations and velocities; step particles
- (Set temperature)

Find pairs

Now we know how to calculate forces. How to get pairs?

- All pairs: $\sim N^2$ calculations. *Only* if there is no other way!
- Short range interactions: box method
- Long range interactions: k-space

Bucketing algorithm Finite interaction length L



- Grid with size L
- Grid of array with particle indexes in box
- Maximum number of neighbors or dynamic array
- ► If there is v_{max} then $L' = L + v_{max}\Delta t$, then reset array every Δt timesteps

k-space solution

- Long reange interactions (e.g. Coulomb) cannot be cut off
- Often more periodic images are needed
- k-space (Fourier-transformation in 3d!)
 - Solution of linear problems by Green's-function
 - Coulomb problem: in Fouier space \rightarrow multiplication!
- Ewald summation:
 - Handle short range in real and long range in k-space

Program

- Have an algorithm to calculate forces
- Get list of interacting particles
- Determine accelerations and velocities; step particles
- (Set temperature)

Euler method

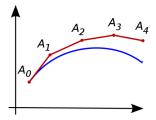
Velocity:

$$\frac{\Delta v}{\Delta t} = F/m$$
$$\Delta v = F/m\Delta t$$

$$\Delta v = F/m\Delta$$

Displacement

 $\Delta x = v \Delta t$



Runge-Kutta method

$$\begin{split} \dot{y} &= f(t, y), \quad y(t_0) = y_0, \qquad & k_1 = f(t_n, y_n), \\ y_{n+1} &= y_n + \frac{1}{6}h\left(k_1 + 2k_2 + 2k_3 + k_4\right) \qquad & k_2 = f\left(t_n + \frac{1}{2}h, y_n + \frac{h}{2}k_1\right), \\ t_{n+1} &= t_n + h \qquad & k_3 = f\left(t_n + \frac{1}{2}h, y_n + \frac{h}{2}k_2\right), \\ & k_4 = f\left(t_n + h, y_n + hk_3\right). \end{split}$$

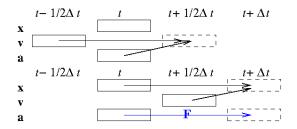
- Fourth order method
- Very precise but

- Four times force calculation
- No energy conservation (non-sympletic)

Leapforg method

Page 24

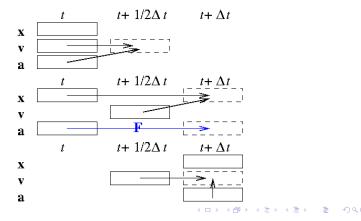
• Calculate $\mathbf{v}(t + \frac{1}{2}\Delta t) = \mathbf{v}(t - \frac{1}{2}\Delta t) + \mathbf{a}(t)\Delta t$ • Calculate $\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \mathbf{v}(t + \frac{1}{2}\Delta t)\Delta t$



Verlet method

25

- Calculate $\mathbf{v}(t + \frac{1}{2}\Delta t) = \mathbf{v}(t) + \frac{1}{2}\mathbf{a}(t)\Delta t$
- Calculate $\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \mathbf{v}(t + \frac{1}{2}\Delta t)\Delta t$
- Derive $\mathbf{a}(t+\Delta t)$ from the forces
- Calculate $\mathbf{v}(t + \Delta t) = \mathbf{v}(t + \frac{1}{2}\Delta t) + \frac{1}{2}\mathbf{a}(t + \Delta t)\Delta t$



Sympletic integrator

- Energy (slightly modified) is conserved
- Time reversibility
 - Verlet

- Leapfrog
- Most molecular dynamics methods use Verlet!
 - Forces are calculated once per turn
 - Microcanonical (NVE) modelling can be only done with these

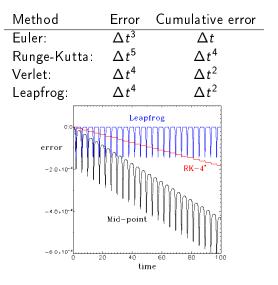
Multiple time scale integration

Different force range

- Short range change fast
- Long range change slowly
- Recalculate long range forces only in every *n*th times-step
 - Forces are calculated once per turn
- Typical examples:

- Intramolecular forces: strong, high frequency
- Intermolecular forces (e.g. Lennard-Jones, Coulomb) slow

Error



Page 28

▲口 > ▲母 > ▲目 > ▲目 > ▲日 > ④ < ④