
Simulations in Statistical Physics
Course for MSc physics students

Janos Török

Department of Theoretical Physics

September 17, 2013



Simulations

Experiments Simulations
Principle of measurement Algorithm
Apparatus Program + Hardware
Calibration Calibration + Debugging
Sample Sample
Measurement Run

Data collection
Analysis



Simulations

Experiments Simulations
Principle of measurement Algorithm
Apparatus Program + Hardware
Calibration Calibration + Debugging
Sample Sample
Measurement Run

Data collection
Analysis

Marked ones: Computer codes!



Programming languages

Simulations codes
I System size must be large

I Phase transition ξ →∞
I Real systems N ∼ 1023 (memory < 1011)

I Simulation time should be long
I Relaxation time
I Interesting phenomena take long
I Separation of time scales

Must be efficient!
It is not bad if program is readable and extensible...

Sample preparation
I Sometimes it is also a simulation

Data analysis
I Anything may happen



Programming languages

Problem to solve:
I Fill an array with sum of two random numbers
I Calculate the average of them

python matlab



Programming languages



Optimization
I Multiplication vs. Division (not so old computers)



Optimization

I Programming language
I In example C is 20 times faster than python
I On old computers with multiplication is 20% faster
I Matlab, Maple, Mathematica are expensive
I Clusters have C

I Optimization
I There are many tricks:

I Using pointers instead of arrays
I Indexing
I Reformulate operations
I Does not always worth the pain
I gprof



gprof



Optimization

I Programming language
I In example C is 20 times faster than python
I On old computers with multiplication is 20% faster
I Matlab, Maple, Mathematica are expensive
I Clusters have C

I Optimization
I There are many tricks:

I Using pointers instead of arrays
I Indexing
I Reformulate operations
I Does not always worth the pain
I gprof

I Careful with time
I Too much optimization prevents further development
I Optimize only working code!

I Algorithm
I The war can be won here



Simulations

I Do what nature does
I Molecular dynamics
I Hydrodynamics

I Make use of statistical physics
I Monte-Carlo dynamics
I Simulate simplified models
I Much smaller codes!



Random numbers

I Why?
I Ensemble average:

〈A〉 =
∑

i

AiP
eq
i

Random initial configurations
I Model: e.g. Monte-Carlo
I Fluctuations

I How?



Generate random numbers

I We need good randomness:
I Correlations of random numbers appear in the results
I Must be fast
I Long cycle
I Cryptography



Random number generators

I True (Physical phenomena):
I Shot noise (circuit)
I Nuclear decay
I Amplification of noise

I Atmospheric noise (random.org)
I Thermal noise of resistor
I Reverse biased transistor

I Limited speed
I Needed for cryptography

I Pseudo (algorithm):
I Deterministic

I Good for debugging!
I Fast
I Can be made reliable



Language provided random numbers

It is good to know what the computer does!
I Algorithm

I Performance
I Precision
I Limit cycle
I Historically a catastrophe

I Seed
I From true random source
I Time
I Manual

I Allows debugging
I Ensures difference

First only uniform random numbers



Multiplicative congruential algorithm

I Let rj be an integer number, the next is generated by

rj+1 = (arj + c)mod(m),

I Sometimes only k bits are used
I Values between 0 and m − 1 or 2k − 1
I Three parameters (a, c ,m).
I If m = 2X is fast. Use AND (&) instead of modulo (%).
I Good:

I Historical choice:
a = 75 = 16807, m = 231 − 1 = 2147483647, c = 0

I gcc built-in (k = 31):
a = 1103515245, m = 231 = 2147483648, c = 12345

I Bad:
I RANDU: a = 65539, m = 231 = 2147483648, c = 0



Tausworth, Kirkpatrick-Stoll generator

I Fill an array of 256 integers with random numbers

J[k] = J[(k − 250)&255]ˆJ[(k − 103)&255]

I Return J[k], increase k by one

I Can be 64 bit number
I Extremely fast, but short cycles for certain seeds

XOR function
ˆ 1 0
1 0 1
0 1 0



Tausworth, Kirkpatrick-Stoll generator corrected by Zipf

The one the lecturer uses
I Fill an array of 256 integers with random numbers

J[k] = J[(k − 250)&255]ˆJ[(k − 103)&255]

Increase k by one

J[k] = J[(k − 30)&255]ˆJ[(k − 127)&255]

I Return J[k], increase k by one
I Extremely fast, reliable also on bit level

General transformation x ∈ [0 : 1[

x = r/RAND_MAX



Tests

I Moments: m =

∫ 1

0

1
n + 1

I Correlation

Cq,q′(t) =
∫ 1

0

∫ 1

0
xqx ′q

′
P[x , x ′(t)]dxdx ′ =

1
(q + 1)(q′ + 1)

I Fourier-spectra
I Bit series distribution
I Fill of d dimensional lattice

Last two are not always fulfilled!
I Certain Multiplicative congruential generators are bad on bit

series distribution, not completely position independent.



Bit series distribution
Probability of having k times the same bit

Fit to the tail for different bit positions show



Fill of d dimensional lattice

I Generate d random numbers ci ∈ [0, L]
I Set x [c1, c2, . . . , cd ] = 1
I The Marsaglia effect is that for all congruential multiplicative

generators there will be unavailable points (on hyperplanes) if
d is large enough.

I For RANDU d = 3



Solution for Marsaglia effect

I Instead of d random numbers only 1 (x)
I Divide it int d parts

c_1=x%d, x/=d
c_2=x%d, x/=d
...

I Better to have L = 2k .
I In this case much faster!

General advice: Save time by generating less random numbers



Random numbers with different distributions

I Let us have a good random number r ∈ [0, 1].
I The probability density function is P(x)
I The cumulative distribution is

D(x) =
∫ x

−∞
P(x ′)dx ′

I Obviously:
P(x) = D ′(x)

I The numbers D−1(x) will be distributed according to P(x)
I D−1(x) is the inverse function of D(x) not always easy to get!



Random numbers with different distributions

Graphical representation



Box-Müller method
Normally distributed random numbers

P(x) =
1√
2π

e−x2/2

I Generate independent uniform r1, r2 ∈ (0, 1)
I r1, r2 cannot be zero!
I Two independent normally distributed random numbers:

x1 =
√
−2 log r1 cos 2πr2

x2 =
√
−2 log r1 sin 2πr2

I It uses radial symmetry:

P(x , y) =
1√
2π

e−x2/2 1√
2π

e−y2/2 =
1√
2π

e−(x
2+y2)/2


