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1. Introduction

Economic time series, as e.g., stock market indices or currency exchange
rates depend on the evolution of a large number of strongly interacting
systems far from equilibrium, and belong to the class of complex evolving
systems [1], widely studied in physics and biology [2–4].

Thus, the statistical properties of financial markets have attracted the
interest of many physicists [5–16]. Methods originating in statistical physics
have been proven useful in analyzing financial indices. They are also used
to construct new models for the pricing of derivatives and the assessment
of the involved risk [8].
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Figure 1. (a) Raw data analyzed: The S&P 500 index Z(t) for the 13-year period 3
Jan 1984 – 31 Dec 1996 at intervals of 1 min (these data extend by 7 years the data
set analyzed by Mantegna and Stanley [9]). Note the large fluctuations, such as that on
19 Oct 1987 (“black Monday”). (b) Amplitude of fluctuations |G(t)|, with ∆t = 1 min.
Notice the outliers in the |G(t)| data correspondence to the big changes in the index.

The recent availability of very high frequency data allows us to study
economic time series with a high accuracy on a wide range of time scales
varying from less than 1 minute up to more than 10 years. Consequently, a
large number of methods known from statistical physics have been applied
to characterize the time evolution of stock prices and foreign exchange
rates [5–9, 13–16]. It turns out that the distributions of the increments of
economic time series, both in stock market indices and foreign currency
exchange rates, are nearly symmetric and have strong “leptokurtic” wings
[9, 17]. Index increments as a function of time show only weak correlations
on short time scales below 10 minutes [17, 18], which seemingly makes them
fundamentally different from well known examples of complex dynamic
systems in physics such as, e.g., turbulent flow where power law correlations
on long time scales are commonly observed [19].

The situation is different for the volatility, i.e. the market fluctuations
averaged on a suitable time interval. There is long time persistence much
larger than the correlation time in volatility [20]. Volatility is the key input
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of virtually all option pricing models, including the classic Black and Scholes
[21] and Cox, Ross, and Rubinstein [22] binomial models that are based on
estimates of the asset’s volatility over the remaining life of the option. So
understanding the dynamics of the volatility has very important practical
implications.

Here we quantify long range power law correlations in the volatility of
the S&P 500 stock index and report the occurrence of a cross-over phe-
nomenon of this long range correlation. Furthermore, we discuss the dis-
tribution of the volatility, and show that it can be fitted very well by a
log-normal distribution.

2. Quantification of Correlations in S&P 500

2.1. DATA DESCRIPTION AND DETRENDING

The S&P 500 index, an index of the New York Stock Exchange, consists of
the 500 largest companies in the US. It is a market-value weighted index
(stock price times number of shares outstanding), with each stock’s weight
in the index proportionate to its market value. The S&P 500 index is one
of the most widely used benchmarks of U.S. equity performance. Our data
cover 13 years (from Jan 1984 to Dec 1996, see Fig. 1a), with a recording
frequency of 15 seconds interval. The total number of data points in this 13
years period exceed 4.5 million, which allows for a very detailed statistical
analysis.

Fig. 1a shows the S&P 500 index Z(t) from 1984 to 1996 in semi-log
graph. The index Z(t) tends to increase constantly except some crashes,
such as the crashes in Oct. 1987 and May 1990. Since the standard deviation
of Z(t+ ∆t)−Z(t) is proportional to the price level, we take the logarithm
of the index as everyone does. We define the forward change G(t) quantity
in this paper

G(t) ≡ loge Z(t+ ∆t)− loge Z(t) , (1)

where ∆t is the time-lag (set to 1 minute in the correlation study).
We only count the number of minutes during the opening hours of the

stock market, and remove the nights, weekends and holidays from the data
set, i.e. the closing and the next opening of the market is continuous.

The absolute value of G(t) describes the amplitude of the fluctuation,
as shown in Fig. (1b). |G(t)| is, by definition, always positive, and there are
no obvious global trends visible, which is due to the logarithmic difference,
i.e. the relative increment on the original index Z(t). The large values of
Z(t) correspond to the crashes and big rallies of the index. It is known in
the financial literature that the volatility varies in time [23], as expected
the |G(t)| quantity also fluctuates in time.
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Figure 2. The intra-day pattern A(t) of S&P 500 index marked by 1-minute interval.
Before Sept. 30, 1985, the data length is 6 hours per day. After then, it’s 6 1

2
hours. The

two curves have the same pattern, only the latter curve is shown here. Big changes in
the price happen within the first 10 minutes after the market opens.

It is known that there exist intra-day patterns in NYSE and S&P 500
index data, one simple explanation is that there are many information
traders active near the opening and many liquidity traders active near the
closing [24]. We find a similar intra-day pattern in our S&P 500 index data
set(Fig. (2)). The intra-day pattern is defined as

A(t) ≡
∑N
i=1 |G(ti,same)|

N
, (2)

where N is the total trading days over the 13-year period and tsame is
the same time of each day (N = 3309 in our study). In order to avoid
the artificial correlation caused by this daily oscillation, the G(t) signal is
normalized by the intra-day pattern

g(t) ≡ G(t)/A(t) , (3)

i.e. each data point divided by the intra-day pattern of its corresponding
time during the day.

2.2. METHODS TO CALCULATE CORRELATIONS

We have three methods to quantify the correlations. The direct method
of studying the correlation property is the correlation function estimation,
which is defined as
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Figure 3. (a) Semi-log plot of correlation functions of g(t) and |g(t)|. (b) The same
correlations in the double log plot. g(t) decays exponentially to 0 within half an hour.
But the curve of |g(t)| decays very slowly for more than 4 decades. A power law correlation
seems to exist for |g(t)|. Note that both graphs are truncated at the first zero value of
C(τ).

C(τ) ≡ 〈G(t)G(t+ τ)〉 − 〈G(t)〉2

〈G2(t)〉 − 〈G(t)〉2
(4)

where τ is the time lag. The problem with the correlation function estima-
tion is that it depends on the estimated average value of the time series.
Since it is difficult to calculate the true average value, the correlation func-
tion can only give us a qualitative estimation [25].
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Another method of calculating the correlation functions is the tradi-
tional power spectrum analysis. Since this method can only apply to linear
and stationary (or strictly periodic) time series, although it could give quan-
titative measures, we still need some other method to confirm its results.

Figure 4. Plot of (a) the power spectrum S(f) and (b) the detrended fluctuation
analysis F (t) of the absolute values of the 1 min increments. The lines show the best
power law fits (r values are better than 0.99) to the data above and below the crossover
frequency of f× = (1/570) min−1 in (a) and of the crossover time t× = 600 min in (b). To
remove artificial correlations resulting from the intra-day pattern of the market activity
[24, 26–28], we analyze normalized data |g(t)| ≡ |G(t)|/A(t), where A(t) is the activity
at the same time of the day averaged over all days of the data set. For the DFA method,
we integrate |g(t)| once; then we determine the fluctuations F (t) of the integrated signal
around the best linear fit in a time window of size t.

We applied the third method—termed detrended fluctuation analysis
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(DFA) [29, 30]—-to quantify the correlation exponent. The advantages of
DFA over conventional methods (e.g. spectral analysis and Hurst analysis)
are that it permits the detection of long-range correlations embedded in a
nonstationary time series, and also avoids the spurious detection of appar-
ent long-range correlations that are an artifact of nonstationarities. This
method has been validated on control time series that consist of long-range
correlations with the superposition of a nonstationary external trend [29].
The DFA method has also been successfully applied to detect long-range
correlations in highly complex heart beat time series [30, 31], and other
physiological signals [32, 33].

A detailed description of the DFA algorithm appears elsewhere [29, 30].
Briefly, the |g(t)| time series (with N data) is first integrated,

y(t) ≡
t∑
i=1

|g(i)| . (5)

Next the integrated time series is divided into boxes of equal length, n. In
each box of length n, a least squares line is fit to the data (representing the
trend in that box). The y coordinate of the straight line segments is denoted
by yn(t). Next we detrend the integrated time series, y(t), by subtracting
the local trend, yn(t), in each box. The root-mean-square fluctuation of this
integrated and detrended time series is calculated by

F (n) =

√√√√ 1
N

N∑
t=1

[y(t)− yn(t)]2. (6)

This computation is repeated over all time scales (box sizes) to provide
a relationship between F (n), the average fluctuation as a function of box
size. In our case, the box size n ranged from 10 min to 105 min, the upper
bound of n is determined by the actual data length. Typically, F (n) will
increase with box size n (Fig. 4b). A linear relationship on a double log
graph indicates the presence of power law (fractal) scaling. Under such
conditions, the fluctuations can be characterized by a scaling exponent α,
the slope of the line relating logF (n) to log n (Fig. 4b).

For exactly self-similar process, as e.g. fractional Brownian motion, the
DFA exponent α is related to the power spectrum exponent β through the
relation α = (1 + β)/2 [25]. The calculation of F (n) can distinguish four
types of behavior. (1) Uncorrelated time series give rise to uncorrelated
random walks described by F (n) ∼ nα with α = 1/2, as expected from
the central limit theorem. The power spectrum would be flat with β =
0. (2) Markov processes with a characteristic correlation length t0 give
C(τ) ∼ exp(−τ/t0); for t < t0, it is the Brownian process with α = 1.5 and
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corresponding β = 2, nonetheless the asymptotic behavior for sufficiently
large t with α = 1/2 would be unchanged from the purely random case.
(3) In the presence of long-range correlations with no characteristic time
scale, the scaling property would be a power law function with α 6= 1/2
and β 6= 0.

Figure 5. Double log plot of the DFA measurement of randomly shuffled |g(t)| time
series. Circles are the fluctuations of the data, the least square fitting gives DFA exponent
α = 0.50, which means that no correlation exists.

2.3. CORRELATION RESULTS OF S&P 500 INDEX

Using correlation function estimation, we find that the correlation func-
tion of g(t) decays exponentially with a characteristic time of the order
of 1-10 min, but the absolute value |g(t)| does not (Fig. 3). This result is
consistent with previous studies on several economic series [18, 20, 34].

The power spectrum calculation of |g(t)| (Fig. 4a) shows that the data
fit not one but rather two separate power laws: for f > f× the power law
exponent is β1 = 0.31, while for f < f× the exponent β2 = 0.90 is three
times larger; here f× is called the crossover frequency.

DFA method confirms our power spectrum results (Fig. 4a). From the
behavior of the power spectrum, we expect that the DFA method will also
predict two distinct regions of power law behavior, with exponents α1 =
0.66 and α2 = 0.95 for t less than or greater than a characteristic time scale
t× ≡ 1/f×, where we have used the relation

α = (1 + β)/2 . (7)



58 YANHUI LIU ET AL.

Figure 6. (a) Raw data analyzed: The S&P 500 index Z(t) for the 13-year period These
data extend by 7 years the data set analyzed by Mantegna and Stanley [9]. (b) Results
of dragging a window of size 1 y down the same data base, one month at a time, and
calculating the best fit exponent α1 (dashed line) and α2 (full line) for the time intervals
t < t× and t > t× respectively.

The data of Fig. 4b yield α1 = 0.66, α2 = 0.93, thereby confirming the
consistency of the power spectrum and DFA methods. Also the crossover
time is very close to the result obtained from the power spectrum, with

t× ≈ 1/f× ≈ 600 min (8)

it is about 1.5 trading days.
To test whether this correlation is due to the distribution function, we

shuffled each point of the |g(t)| time series randomly. The shuffling opera-
tion keeps the distribution of |g(t)| unchanged, but kills the correlations in
the time series totally if there are any. DFA measurement of this randomly
shuffled data does not show any correlations and gives exponent α = 0.50
(Fig. 5). This tells us that the long-range correlations are actually due to the
dynamics of the economic system and not simply due to the distribution.

The observed long range correlation and the crossover behavior noted
above is from the entire 13-year period, so it is natural to enquire whether
it will still hold for periods smaller than 13 years. Therefore, we choose
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a sliding window (with size 1 y) and calculate both exponents α1 and α2

within this window as the window is dragged down the data set with one
month step. We find (Fig. 6b) that the value of α1 is very “stable” (inde-
pendent of the position of the window) fluctuating around the mean value
2/3. Surprisingly, however, the variation of α2 is much greater, showing
sudden jumps when very volatile periods enter or leave the time window.

We studied several standard mathematical models, such as fractional
Brownian motion [25, 35] and fractional ARIMA processes [36], commonly
used to account for long-range correlation in a time series and found that
none of them can reproduce the large fluctuation of α2.

3. The Volatility Distribution of S&P 500

The volatility is a measure of the mean fluctuation of a market price over
a certain time interval T . The volatility is of practical importance since it
quantifies the risk related to assets [8]. As shown above, unlike price changes
that are correlated only on very short time scales [18] (a few minutes), the
absolute values of price changes (which are closely related to the volatility)
show correlations on time scales up to many years [20, 34, 37, 38].

The same data set of the S&P 500 index of the New York stock exchange
is explored here to study the volatility distribution. This data set has been
extended by 7 years from the data set previously analyzed in [9].

We calculate the logarithmic increments G(t) in Eq. 1, where G(t) is the
relative price change ∆Z/Z in the limit ∆t→ 0. Here we set ∆t = 30 min,
well above the correlation time of the price increments; and we obtain
similar results for other choices of ∆t (larger than the correlation time).

As we showed in the correlation discussion, there is a strong “U-shape”
market activity over the day. To remove artificial correlations resulting from
this intra-day pattern of the volatility [26–28, 39], we normalized |G(t)| by
A(t) as shown in Eq. 3.

We obtain the volatility at a given time by averaging |g(t)| over a time
window T = n ·∆t with some integer n,

vT (t) ≡ 1
n

t+n−1∑
t′=t

|g(t′)| . (9)

Fig. 7 shows (a) the S&P500 index and (b) the signal vT (t) for a long
averaging window T = 8190 min (about 1 month). The volatility fluctuates
strongly showing a marked maximum for the ’87 crash. In general, periods of
high volatility are not independent but tend to “cluster”. This clustering is
especially marked around the ’87 crash, which is accompanied by precursors
(possibly related to the oscillatory patterns postulated in [8]). Clustering
occurs also in other periods (e.g. in the second half of ’90), while there are
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Figure 7. (a) Raw data analyzed: The S&P 500 index Z(t) for the 13-year period. (b)
Volatility vT (t) with T=1 month (8190min) and time lag 30min. Possible “precursors”
of the ’87 crash are indicated by arrows.

extended periods where the volatility remains at a rather low level (e.g. the
years of ’85 and ’93).

Fig. 8a shows the scaled probability distribution P (vT ) for several val-
ues of T . The data for different averaging windows collapse to one curve.
Remarkably, the scaling form is log-normal, not Gaussian. In the limit of
very long averaging times, one expects that P (vT ) will become Gaussian,
since the central limit theorem also holds for correlated series [25], with a
slower convergence than for non-correlated processes [12, 40]. However, a
log-normal fits the data better than a Gaussian, as is evident in Fig. 8b
which compares the best log-normal fit with the best Gaussian fit for data
averaged over a 300 min window.

The correlations found in Fig. 7b can be accurately quantified by de-
trended fluctuation analysis [29]. The analysis reveals power-law behavior
independent of the T value chosen (Fig. 9) with an exponent α ∼= 0.9
in agreement with the value found for the absolute price increments (see
Sec. 2).
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Figure 8. (a) The volatility distribution for different window sizes T in scaled form,√
µ exp(a + µ/4)P (vT ) as a function of (ln(vT ) − a)/

√
πµ, where a and µ are the mean

and the width on a logarithmic scale. By the scaling, all curves collapse to the log-normal
form with a = 0 and µ = −1, exp(−(lnx)2) (dotted line). (b) Comparison of the best
log-normal and Gaussian fits for the 300min data.

4. Discussion of Empirical Results

In this study, we have used the DFA method to display correlation in the
volatility of S&P 500 index. We find that the volatility is highly correlated,
and that the correlation is remarkably long range, indeed, over 5 decades.
Moreover, the quantitative scaling of the correlation follows the power law
form observed in numerous phenomena which have a self-similar or “fractal”
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Figure 9. The fluctuation F (t) of volatility vT (t) with T=120 min, 600 min, and
2100 min, calculated using detrended fluctuation analysis (DFA) [29]. To implement the
DFA method, we integrate vT (t) once; then we determine the fluctuations F (t) of the
integrated signal around the best linear fit in a time window of size t. The lines are the
best power-law fits with exponents α =0.91, 0.89, and 0.91.

origin.
We have also found that the probability distribution of the S&P500

volatility can be well described by a log-normal function. This functional
shape does not depend on the averaging time interval T used to calculate
volatility vT (t). The log-normal shape of the distribution is consistent with
a multiplicative process [41] for the volatility [10]. However, a multiplicative
behavior would be surprising, because efficient market theories [18] assume
that the price reflects all current information that could anticipate future
events and the price changes, G(t), are caused by incoming new information
about an asset. Since such information-induced price changes are additive
in G(t), they should not give rise to multiplicative behavior of the volatility.

To account for the time dependence of the volatility and its long-range
correlations, ARCH [42], GARCH [43] models and related approaches [36]
have been developed, which assume that the volatility depends on time and
on the past evolution of the index. It may also be worthwhile testing these
models with regard to the volatility distribution P (vT ).
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