
S E C  T I O N  3 4 - 7 A Particle in a Bax 

The product of the intrinsic uncertainties in position and momentum is 

h ilx ilp - A X - = h 
x A 

If we define precisely what we mean by uncertainties in measurement, we can 
give a precise statement of the uncertainty principle. If LlX and Llp are defined to 
be the standard deviations in the measurements of position and momentum, it 
can be shown that their product must be greater than or equal to n12.  
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where n = hI27T.t 
Equation 34-19 provides a statement of the uncertainty principle first enunci­

ated by Werner Heisenberg in 1927. In practice, the experimental uncertainties 
are usually much greater than the intrinsic lower limit that results from wave­
particle duality. 

3 4 . 7  A P a r t i c l e  i n  a B o x  

We can illustrate many of the important features of quantum physics without 
solving the Schrodinger equation by considering a simple problem of a particle 
of mass m confined to a one-dimensional box of length L, like the particle in 
Example 34-5. This can be considered a crude description of all. electron confined 
within all. atom or a proton confined within a nucleus. If a classical particle 
bounces back and forth between the walls of the box, the particle's energy 
and momentum can have any values. However, according to quantum theory, 
the particle is described by a wave function I/J, whose square describes the proba­
bility of finding the particle in some region. Since we are assuming that the 
particle is indeed inside the box, the wave function must be zero everywhere 
outside the box. If the box is between x = 0 and x = L, we have 

I/J = 0, for x :s 0 and for x 2: L 

In particular, if we assume the wave function to be continuous 
everywhere, it must be zero at the end points of the box x = 0 
and x = L. This is the same condition as the condition for 
standing waves on a string fixed at x = 0 and x = L, and the 
results are the same. The allowed wavelengths for a particle in 
the box are those where the length L equals an integral num­
ber of half wavelengths (Figure 34-11) .  
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STANDING-WAVE CONDITION FOR A PARTICLE IN A BOX OF LENGTH L 

The total energy of the particle is its kinetic energy 
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t The combina tion 11 /271 occurs so often it is given a special symbol, some,,,,hat 
analogolls to giving the special symbol w for 2 7fj, which occurs often in oscillations. 

F I G  U R E 3 4 - 1 1 Standing waves on a string fixed at 
both ends. The standing-wave condition is the same as 
for standing electron waves in a box. 




