
S E C  T I O N  3 5 - 4 Reflection and Transmission of Electron Waves: Barrier Penetration 1 1 57 

We see from this example that the ground-state energy is given by 

E = 
h2a 

= 
�

hw o m 2 0 35-24 

The first excited state has a node in the center of the potential well, just as with 
the particle in a box.t The wave function 1/J1 (X) is 

if;1 (X) = A1xe-nx2 

where a = mwo/2h, as in Example 35-1 .  This function 
is also shown in Figure 35-7. Substituting 1/J1(X) into 
the Schrodinger equation, as was done for I/Jo(x) in Ex­
ample 35-1, yields the energy of the first excited state, 

In general, the energy of the nth excited state of the 
harmonic oscillator is 

E" = (n + �)hwo' n = 0, I, 2, . . . 35-26 

35-25 

U(x) 

E5 = (5 + � )llwo 

E4 = (4 +� ) IlWo 

1 E3 = (3 +2 )llwo 

E
2 

= (2 +�) IlWo 

1 E1 = (1 + 2 )  Ilwo 
as indicated in Figure 35-8. The fact that the energy 
levels are evenly spaced by the amount hwo is a pecu­
liarity of the harmonic oscillator potential. As we saw 
in Chapter 34, the energy levels for a particle in a box, 
or for the hydrogen atom, are not evenly spaced. The 
precise spacing of energy levels is closely tied to the 
particular form of the potential energy function. 
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FIG U R E 3 5 · 8  Energy levels in the harmonic oscillator potential. 

35·4 R e f l e c t i o n  a n d  Tra n s m i s s i o n  of 
E l e c t r o n  Wav e s :  B a r r i e r  P e n etrati o n  

In Sections 35-2 and 35-3, we were concerned with bound-state problems in 
which the potential energy is larger than the total energy for large values of Ix [ .  
In this section, we consider some simple examples of unbound states for which 
E is greater than U(x). For these problems, d21/J/ dx2 and �J have opposite signs, so 
If;(x) curves toward the axis and does not become infinite at large values of Ix l .  

Ste p Potential 

Consider a particle of energy E moving in a region in which the potential energy 
is the step function 

U(x) = 0, x < 0 

U(x) = Uw x > 0 

as shown in Figure 35-9 . We are interested in what happens when a particle 
moving from left to right encounters the step. 

The classical answer is simple. To the left of the step, the particle moves with 
a speed v = V2E/m. At x = 0,  an impulsive force acts on the particle. If the 
initial energy E is less than Uo' the particle will be turned around and will then 
move to the left at its original speed; that is, the particle will be reflected by the 
step. If E is greater than Uo' the particle will continue to move to the right but 
with reduced speed given by v = V2(E - Uo) /m .  We can picture this classical 
problem as a ball rolling along a level surface and coming to a steep hill of 
height h given by mgh = Uo. If the initial kinetic energy of the ball is less than 

U(x) 

I----- Uo 

x 

F I G  U R E 3 5 · 9  Step potential. A 
classical particle incident from the left, 
with total energy E > Uo' is always 
transmitted. The change in potential 
energy at x = 0 merely provides an 
impulsive force that reduces the speed 
of the particle. A wave incident from the 
left is partially transmitted and partially 
reflected because the wavelength 
changes abruptly at x = o. 

t Each higher-energy state has one additional node 
in the wave function. 
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mgh, the ball will roll part way up the hill and then back down and to the left 
along the lower surface at its original speed. If E is greater than mgh, the ball will 
roll up the hill and proceed to the right at a lesser speed. 

The quantum-mechanical result is similar when E is less than Uo . Figure 35-10 
shows the wave function for the case E < Uo. The wave function does not go to 
zero at x = 0 but rather decays exponentially, like the wave function for the 
bound state in a finite square-well problem. The wave penetrates slightly into the 
classically forbidden region x > 0, but it is eventually completely reflected. This 
problem is somewhat similar to that of total internal reflection in optics. 

For E > Uo, the quantum-mechanical result differs markedly from the classical 
result. At x = 0, the wavelength changes abruptly from A1 = hlp1 = hi � to 
A2 = hlp2 = h /

V
2m ( E  - Uo) '  We know from our study of  waves that when the 

wavelength changes suddenly, part of the wave is reflected and part of the wave 
is transmitted. Since the motion of an electron (or other particle) is governed by a 
wave equation, the electron sometimes will be transmitted and sometimes will 
be reflected. The probabilities of reflection and transmission can be calculated by 
solving the Schrbdinger equation in each region of space and comparing the 
amplitudes of the transmitted waves and reflected waves with that of the 
incident wave. This calculation and its result are similar to finding the fraction of 
light reflected from an air-glass interface. If R is the probability of reflection, 
called the reflection coefficient, this calculation gives 

35-27 

where k1 is the wave number for the incident wave and k2 is the wave number for 
the transmitted wave. This result is the same as the result in optics for the reflec­
tion of light at normal incidence from the boundary between two media having 
different indexes of refraction n (Equation 31-11).  The probability of transmis­
sion T, called the transmission coefficient, can be calculated from the reflection 
coefficient, since the probability of transmission plus the probability of reflection 
must equal 1 :  

T + R = l  35-28 

REFLECTION AND TRANSMISSION AT A STEP BARRIER 3 5 - 2 

A particle of energy Eo traveling in a region in which the potential energy is 

zero is incident on a potential barrier of height Uo = 0.2Eo' Find the probabil­

ity that the particle will be reflected. 

P IC T U R E T H E P R O  B L E M We need to calculate the wave numbers k1 and k2 and 
use them to calculate the reflection coefficient R from Equation 35-27. The wave 
numbers are related to the kinetic energy K by K = p2/2m = fi2k2/2m. 

(k - k ) 2  
1 .  The probability of  reflection i s  the reflection coefficient: R = 

1 2 
(kl + k2)2 

2.  Calculate kl from the initial kinetic energy Eo: 
fi2Jc2 

E = __ 
1 

o 2m 

x 

F IG U R E 3 5 - 1 0 When the total 
energy E is less than Uo, the wave 
function penetrates slightly into the 
region x > O. However, the probability of 
reflection for this case is 1, so no energy 
is transmitted. 

3. Relate k2 to the final kinetic energy K2: 

k1 = 
V

2mEoIfi2 = 1 .41 
V

mEolfi2 

fik� 
-2 = K2 = Eo - Uo = Eo - 0.2Eo = 0.8Eo m 




