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Stand ing Waves and Energy Quantization 

Given that electrons have wave-like properties, it should be possible to pro­
duce standing electron waves . If energy is associated with the frequency of a 
standing wave, as in E = hf (Equation 34-14), then standing waves imply quan­
tized energies. 

The idea that the discrete energy states in atoms could be explained by 
standing waves led to the development by Erwin Schrbdinger and others in 
1 926 of a detailed mathematical theory known as quantum theory, quantum 
mechanics, or wave mechanics. In this theory, the electron is described by a 
wave function 1/; that obeys a wave equation called the Schrbdinger equation. 
The form of the Schrbdinger equation of a particular system depends on the 
forces acting on the particle, which are described by the potential energy func­
tions associated with those forces. In Chapter 35 we discuss this equation, 
which is somewhat similar to the classical wave equations for sound or for 
light. Schrbdinger solved the standing wave problem for the hydrogen atom, 
the simple harmonic oscillator, and other systems of interest. He found that the 
allowed frequencies, combined with E = hi resulted in the set of energy levels 
found experimentally for the hydrogen atom, thereby demonstrating that 
quantum theory provides a general method of finding the quantized energy 
levels for a given system. Quantum theory is the basis for our understanding 
of the modern world, from the inner workings of the atomic nucleus to the 
radiation spectra of distant galaxies . 

3 4 . 5  T h e  I n t e r p r e t a t i o n  o f  
t h e  Wa v e  F u n c t i o n  
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The wave function for waves on a string is the string displacement y. The wave 
function for sound waves can be either the displacement of the air molecules 5, or 
the pressure P. The wave function for electromagnetic waves is the electric field E 
and the magnetic field B. What is the wave function for electron waves? 
The symbol we use for this wave function is 1/; (the Greek letter psi) . When 
Schrbdinger published his wave equation, neither he nor anyone else knew just 
how to interpret the wave function !f;. We can get a hint about how to interpret !f; 
by considering the quantization of light waves. For classical waves, such as 
sow1d or light, the energy per unit volume in the wave is proportional to the 
square of the wave function. Since the energy of a light wave is quantized, the 
energy per unit volume is proportional to the number of photons per unit vol­
ume. We might therefore expect the square of the photon's wave function to 
be proportional to the number of photons per unit volume in a light wave. But 
suppose we have a very low-energy source of light that emits just one photon at 
a time. In any unit volume, there is either one photon or none. The square of 
the wave function must then describe the probability of finding a photon in some 
unit volume . 

. The Schrbdinger equation describes a single particle. The square of the wave 
function for a particle must then describe the probability density, which is the 
probability per unit volume, of finding the particle at a location. The probability 
of finding the particle in some volume element must also be proportional 
to the size of the volume element dV Thus, in one dimension, the probability 
of finding a particle in a region dx at the position x is !f;2(X) dx. If we call this 
probability P(x) dx, where P(x) is the probability density, we have 

P(x) = !f;2(X) 34-17 

PROBABIlITY DENSITY 
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Generally the wave function depends on time as well as position, and is written 
1j;(x,t). However, for standing waves, the probability density is independent of 
time. Since we will be concerned mostly with standing waves in this chapter, we 
omit the time dependence of the wave function and write it 1j;(x) or just 1j;. 

The probability of finding the particle in dx at point Xl or at point x2 is the sum 
of the separate probabilities P(xl) dx + P(x2) dx. If we have a particle at all, the 
probability of finding the particle somewhere must be 1 .  Then the sum of the 
probabilities over all the possible values of X must equal 1 .  That is, 

34-18 

NORMALIZATION CONDITION 

Equation 34-18 is called the normalization condition. If 1j; is to satisfy the 
normalization condition, it must approach zero as x approaches infinity. This 
places a restriction on the possible solutions of the Schrodinger equation. 
There are solutions to the Schrodinger equation that do not approach zero as 
x approaches infinity. However, these are not acceptable as wave functions. 

PROBABILITY CALCUlATION FOR A ClASSICAL PARTICLE EXAMPLE 3 4 · 5  

P(x) 
It is known that a classical point particle moves back and forth with constant 
speed between two walls at x = 0 and x = 8 em (Figure 34-10). No additional 
information about the location of the particle is known. (a) What is the 
probability density P(x)? (b) What is the probability of finding the particle at 
x = 2 em? (c) What is the probability of finding the particle between x = 3.0 em 

and x = 3.4 em? 

1---------, Po 

8 cm x 
P I C  T U R E T H E P R O  B L E M We do not know the initial position of the particle. 
Since the particle moves with constant speed, it is equally likely to be anywhere 
in the region a < x < 8 cm. The probability density P(x) is therefore independent 
of x, for a < x < 8 cm, and zero outside of this range. We can find P(x), for 
a < x < 8 cm, by normalization, that is, by requiring that the probability that the 
particle is somewhere between x = a and x = 8 cm is 1 .  

FIG U R E 3 4 · 1 0 The probability 
function P(x). 

(a) 1 .  The probability density P(x) is uniform between the 
walls and zero elsewhere: 

2.  Apply the normalization condition: 

3. Solve for Po: 

(b) The probability of finding the particle in some range LlX 
is proportional to PoLlX = Llx/ (8 cm) . Since it is given 
that LlX = 0, the probability of finding the particle at 
the point x = 2 cm is O. Alternatively, since there is an 
infinite number of points between x = a and x = 8 cm, 
and the particle is equally likely to be at any point, the 
chance that the particle will be at any one particular 
point must be zero. 

P(x) = PO' a < x < 8 cm 

P(x) = 0, x < a or x > 8 cm f +00 

J
8 cm 

P(x) dx = Po dx = Po (8 cm) = 1 
-00 a 

P - --[§] 0 - 8 cm 

The probability of finding the particle 
at the point x = 2 cm is 0. 




