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35.1 T h e  S c h rod i n g e r  Equ a t i o n  

Like the classical wave equation (Equation 15-9b), the Schrodinger equation is a 
partial differential equation in space and time. Like Newton's laws of motion, the 
Schrodinger equation cannot be derived. Its validity, like that of Newton's laws, 
lies in its agreement with experiment. In one dimension, the Schrodinger equa­
tion ist 
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TIME-DEPENDENT SCHRODINGER EQUATION 

where U is the potential energy function. Equation 35-1 is called the time­

dependent Schrodinger equation. Unlike the classical wave equation, it relates 
the second space derivative of the wave function to the first time derivative of the 
wave function, and it contains the imaginary number i = \1=1. The wave func­
tions that are solutions of this equation are not necessarily real. 'I'(x, t) is not a 
measurable function like the classical wave functions for sound or electromag­
netic waves. The probability of finding a particle in some region of space dx is 
certainly real though, so we must modify slightly the equation for probability 
density given in Chapter 34 (Equation 34-17). We take for the probability of 
finding a particle in some region dx 

P(x, t) dx = 1'1'(x, t) 12 dx = '1'*'1' dx 35-2 

where '1'*, the complex conjugate of '1', is obtained from 'I' by replacing i by -i 
wherever it appears.+ 

In classical mechanics, the standing-wave solutions to the wave equation 
(Equation 16-16) are of great interest and value. Not surprisingly, standing-wave 
solutions to the Schrodinger wave equation are also of great interest and value. 
The wave function for the standing-wave motion of a uniform taut string is 
A sin(kx) cos(wt + 8), and this is representative of all standing waves. A standing 
wave function can always be expressed as a function of position multiplied by 
a function of time, where the function of time is one that varies sinusoidally with 
time. Standing-wave solutions to the one-dimensional Schrodinger wave equa­
tion are thus expressed 

'I'(x, t) = ljJ(x)e-iwt 35-3 

where e-i,ut = cos(wt) - i sin(wt). [In Appendix D, it is shown that e-iwt = 

cos(wt) - i sin(wt).] The right side of Equation 35-1 is then 

. a'l'(x,t) . . '  . . zn = zn( -lw) ljJ(x)e-'wt = nwljJ(x)c 1wt = EIjJ(x)e-'wt at 

where E = hw is the energy of the particle. 
The Schrodinger wave equation has standing-wave solutions only if the 

potential energy function depends upon position alone. Substituting ljJ(x)e-iwt 
into Equation 35-1 and canceling the common factor e-hut, we obtain an equation 
for ljJ(x), called the time-independent Schrodinger equation: 

t Although we simply state the Schrodinger equation, Schrodinger himself had a vast knowledge of classical wave 
theory that led him to this equation. 

+ Every complex number can be written in the form z = a + bi, where nand b are real numbers and i = v=i. 
The complex conjugate of z is z* = n - hi, so z*z = (n + bi)(n - bi) = n' + b' = Izl'- Complex numbers are discussed 
more fully ill Appendix D. 
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TIME-INDEPENDENT SCHRODINGER EQUATION 

where we have written U as U(x) to emphasize that while U may depend on 
position, U does not depend on time. The function U(x) represents the environ­
ment of the particle being described. It is this potential energy function in the 
Schrodinger equation that establishes the difference between different problems, 
just as the expressions for forces acting on a particle play in classical physics. 

The calculation of the allowed energy levels in a system involves only the 
time-independent Schrodinger equation, whereas finding the probabilities of 
transition between these levels requires the solution of the time-dependent equa­
tion. In this book, we will be concerned only with the time-independent 
Schrodinger equation. 

The solution of Equation 35-4 depends on the form of the potential energy 
function U(x). When U(x) is such that the particle is confined to some region of 
space, only certain discrete energies E/l give solutions 1j;/l that can satisfy the 
normalization condition (Equation 34-18): 

f'" 11j;12dx = 1 
-00 

The complete time-dependent wave functions are then given, from Equation 35-3, 

by 

35-5 

A Particle in an Infinite Square-Well Potential 

We will illustrate the use of the time-independent Schrodinger equation by 
solving it for the problem of a particle in a box. The potential energy for a one­
dimensional box from x = a to x = L is shown in Figure 35-1. It is called an 
infinite square-well potential and is described mathematically by 

U(x) = 0, a < x < L 

U(x) = 00, x < a or x > L 35-6 

Inside the box, the potential energy is zero, whereas outside the box it is infinite. 
Since we require the particle to be in the box, we have 1j;(x) = a everywhere 
outside the box. We then need to solve the Schrodinger equation inside the box 
subject to the condition that 1j;(x) must be zero at x = a and at x = L. 

Inside the box U(x) = 0, so the Schrodinger equation is written 

or 

35-7 

where 

35-8 

U(x) 
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FIG U R E 35· 1 The infinite square-well 
potential energy. For x < 0 and x > L, 
the potential energy U(x) is infinite. 
The particle is  confined to the region 
in the well 0 < x < L. 
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(Alpha particles are helium nuclei emitted from larger atoms in radioactive 
decay; they consist of two protons and two neutrons tightly bound together.) In 
general, the smaller the energy of the emitted Q' particle, the longer the half-life. 
The energies of Q' particles from natural radioactive sources range from approxi­
mately 4 MeV to 7 MeV, whereas the half-lives range from approximately 
10-5 second to 1010 years. Gamow represented a radioactive nucleus by a poten­
tial well containing an Q' particle, as shown in Figure 35-17. Without knowing 
very much about the nuclear force that is exerted on the Q' particle within the 
nucleus, Gamow represented it by a square well. Just outside the well, the Q' par­
ticle with its charge of +2e is repelled by the nucleus with its charge + Ze, where 
Ze is the remaining nuclear charge. This force is represented by the Coulomb 
potential energy +k(2e)(Ze)/r. The energy E is the measured kinetic energy of the 
emitted Q' particle, because when it is far from the nucleus its potential energy is 
zero. After the Q' particle is formed inside the radioactive nucleus, it bounces back 
and forth inside the nucleus, hitting the barrier at the nuclear radius R. Each time 
the Q' particle strikes the barrier, there is some small probability of the particle 
penetrating the barrier and appearing outside the nucleus. We can see from 
Figure 35-17 that a small increase in E reduces the relative height of the barrier 
U - E and also the barrier's thickness. Because the probability of penetration is 
so sensitive to the barrier thickness and relative height, a small increase in E 
leads to a large increase in the probability of transmission and therefore to a 
shorter lifetime. Gamow was able to derive an expression for the half-life as a 
function of E that is in excellent agreement with experimental results. 

In the scanning tunneling electron microscope developed in the 1980s, a thin 
space between a material specimen and a tiny probe acts as a barrier to electrons 
bound in the specimen. A small voltage applied between the probe and the 
specimen causes the electrons to tunnel through the vacuum separating the two 
surfaces if the surfaces are close enough together. The tunneling current is 
extremely sensitive to the size of the gap between the probe and specimen. If a 
constant tunneling current is maintained as the probe scans the specimen, the 
surface of the specimen can be mapped out by the motions of the probe. In this 
way, the surface features of a specimen can be measured with a resolution of the 
order of the size of an atom. 

35.5 T h e  S c h rod i n g e r  E qu a t i o n  
i n  T h r e e  D i m e n s i o n s  

The one-dimensional time-independent Schrodinger equation is easily extended 
to three dimensions. In rectangular coordinates, it is 
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FIG U R E 3 5 • 1 6 The penetration of 
a barrier by water waves in a ripple 
tank. In Figure 35-16a, the waves are 
totally reflected from a gap of deeper 
water. When the gap is very narrow, 
as in Figure 35-16b, a transmitted 
wave appears. The dark circles are 
spacers that are used to support the 
prisms from below. 
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FIG U R E 3 5 • 1 7 Model of a potential 
energy function for an Q' particle in a 
radioactive nucleus. The strong attractive 
nuclear force when l' is less than the 
nuclear radius R can be approximately 
described by the potential well shown. 
Outside the nucleus the nuclear force 
is negligible, and the potential is given 
by Coulomb's law, U(I') = +k(2e) (Ze)/l', 
where Ze is the nuclear charge and 2e is 
the charge of the a particle. The wave 
function of the alpha particle, shown 
in red, is placed on the graph. 




