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35-1 The Schrédinger Equation

Like the classical wave equation (Equation 15-9b), the Schrédinger equation is a
partial differential equation in space and time. Like Newton'’s laws of motion, the
Schrédinger equation cannot be derived. Its validity, like that of Newton’s laws,
lies in its agreement with experiment. In one dimension, the Schrédinger equa-
tionist



SECTION 35-1 The Schrédinger Equation
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TIME-INDEPENDENT SCHRODINGER EQUATION

where we have written U as U(x) to emphasize that while U may depend on
position, U does not depend on time. The function U(x) represents the environ-
ment of the particle being described. It is this potential energy function in the
Schrédinger equation that establishes the difference between different problems,
just as the expressions for forces acting on a particle play in classical physics.

The calculation of the allowed energy levels in a system involves only the
time-independent Schrédinger equation, whereas finding the probabilities of
transition between these levels requires the solution of the time-dependent equa-
tion. In this book, we will be concerned only with the time-independent
Schrodinger equation.

The solution of Equation 35-4 depends on the form of the potential energy
function U(x). When U(x) is such that the particle is confined to some region of
space, only certain discrete energies E, give solutions ¢, that can satisfy the
normalization condition (Equation 34-18):

J ly)?dx =1

-0

1151



The one-dimensional time-independent Schrédinger equation is easily extended
to three dimensions. In rectangular coordinates, it is
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