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T
he theory of relativity consists of two rather different theories, the special 
theory and the general theory. The special theory, developed by Albert 
Einstein and others in 1905, concerns the comparison of measurements 

made in different inertial reference frames moving with constant velocity relative 
to one another. Its consequences, which can be derived with a minimum of math­
ematics, are applicable in a wide variety of situations encountered in physics and 
in engineering. On the other hand, the general theory, also developed by Einstein 
and others around 1916, is concerned with accelerated reference frames and 
gravity. A thorough understanding of the general theory requires sophisticated 
mathematics, and the applications of this theory are chiefly in the area of gravita­
tion. The general theory is of great importance in cosmology, but it is rarely 
encountered in other areas of physics or in engineering. The general theory is 
used, however, in the engineering of the Global Positioning System (GPS).t 

t The satell i tes used in CPS contain atomic clocks. 

THE ANDROMEDA GALAXY BY 
MEASURING THE FREQUENCY OF THE 
LIGHT COMING TO US FROM DISTANT 
OBJECTS, WE ARE ABLE TO DETERMINE 
HOW FAST THESE OBJECTS ARE 
APPROACHING TOWARD US OR 
RECEDING FROM US. 

Have you wondered how 

the frequency of the light enables 

us to determine the speed of 

recession of a distant galaxy? This 

is discussed in Example 39·5. 
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>- In this chapter, we concentrate on the special theory (often referred to as 
special relativity). General relativity will be discussed briefly near the end of 
the chapter. 

39.1 Newtonian Relativity 

Newton's first law does not distinguish between a particle at rest and a particle 
moving with constant velocity. If there is no net external force acting, the particle 
will remain in its initial state, either at rest or moving with its initial velocity. 
A particle at rest relative to you is moving with constant velocity relative to an 
observer who is moving with constant velocity relative to you. How might we 
distinguish whether you and the particle are at rest and the second observer is 
moving with constant velocity, or the second observer is at rest and you and the 
particle are moving? 

Let us consider some simple experiments. Suppose we have a 
railway boxcar moving along a straight, flat track with a constant 
velocity v. We note that a ball at rest in the boxcar remains at rest. If 
we drop the ball, it falls straight down, relative to the boxcar, with 
an acceleration g due to gravity. Of course, when viewed from the 
track the ball moves along a parabolic path because it has an initial 
velocity v to the right. No mechanics experiment that we can do­
measuring the period of a pendulum, observing the collisions be­
tween two objects, or whatever-will tell us whether the boxcar is 
moving and the track is at rest or the track is moving and the boxcar 
is at rest. If we have a coordinate system attached to the track and 
another attached to the boxcar, Newton's laws hold in either system. 

A set of coordinate systems at rest relative to each other is called a 
reference frame. A reference frame in which Newton's laws hold is 
called an inertial reference frame.t All reference frames moving at con­
stant velocity relative to an inertial reference frame are also inertial 
reference frames. If we have two inertial reference frames moving with constant 
velocity relative to each other, there are no mechanics experiments that can tell us 
which is at rest and which is moving or if they are both moving. This result is 
known as the principle of Newtonian relativity: 

Absolute motion cannot be detected. 

PRINCIPLE OF NEWTONIAN RELATIVITY 

This principle was well known by Galileo, Newton, and others in the seventeenth 
century. By the late nineteenth century, however, this view had changed. It was then 
generally thought that Newtonian relativity was not valid and that absolute motion 
could be detected in principle by a measurement of the speed of light. 

Ether and the Speed of Light 

We saw in Chapter 15 that the velocity of a wave depends on the properties of the 
medium in which the wave travels and not on the velocity of the source of the 
waves. For example, the velocity of sound relative to still air depends on the tem­
perature of the air. Light and other electromagnetic waves (radio, X rays, etc.) 
travel through a vacuum with a speed c = 3 X 108 mls that is predicted by James 
Clerk Maxwell's equations for electricity and magnetism. But what is this speed 

t Reference frames were first discussed in Section 2-1. Inertial reference frames were also discussed in 
Section 4-1. 

This ring-like structure of the radio 
source MG1131 + 0456 is thought to be 
due to gravitational lensing, first 
proposed by Albert Einstein in 1936, in 
which a source is imaged into a ring by a 
large, massive object in the foreground. 
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relative to? What is the equivalent of still air for a vacuum? A proposed medium 
for the propagation of light was called the ether; it was thought to pervade all 
space. The velocity of light relative to the ether was assumed to be c, as predicted 
by Maxwell's equations. The velocity of any object relative to the ether was con­
sidered its absolute velocity. 

Albert Michelson, first in 1881 and then again with Edward Morley in 1887, 
set out to measure the velocity of the earth relative to the ether by an ingenious 
experiment in which the velocity of light relative to the earth was compared for 
two light beams, one in the direction of the earth's motion relative to the sun and 
the other perpendicular to the direction of the earth's motion. Despite painstak­
ingly careful measurements, they could detect no difference. The experiment 
has since been repeated under various cond itions by a number of people, and no 
difference has ever been found. The absolute motion of the earth relative to the 
ether cannot be detected. 

3!1-2 Einstein's Postulates 

In 1905, at the age of 26,  Albert Einstein published a paper on the electrodynam­
ics of moving bodies.t In this paper, he postulated that absolute motion cannot be 
detected by any experiment. That is, there is no ether. The earth can be consid­
ered to be at rest and the velocity of light will be the same in any direction.+ His 
theory of special relativity can be derived from two postulates. Simply stated, 
these postulates are as follows: 

Postulate 1: Absolute uniform motion cannot be detected. 

Postulate 2: The speed of light is independent of the motion of the source. 

EINSTEIN'S POSTUlATES 

Postulate 1 is merely an extension of the Newtonian principle of relativity to 
include all types of physical measurements (not just those that are mechanical). 
Postulate 2 describes a common property of all waves. For example, the speed of 
sound waves does not depend on the motion of the sound source. The sound 
waves from a car horn travel through the air with the same velocity independent 
of whether the car is moving or not. The speed of the waves depends only on the 
properties of the air, such as its temperature. 

Although each postulate seems quite reasonable, many of the implications of 
the two postulates together are quite surprising and contradict what is often 
called common sense. For example, one important implication of these postu­
lates is that every observer measures the same value for the speed of light inde­
pendent of the relative motion of the source and the observer. Consider a light 
source 5 and two observers, Rl at rest relative to 5 and R2 moving toward 5 
with speed v, as shown in Figure 39-1a. The speed of light measured by R1 is 
C = 3 X 108 m/s. What is the speed measured by R2? The answer is not c + v. By 
postulate 1,  Figure 39-1a is equivalent to Figure 39-1b, in which R2 is at rest 
and the source 5 and R1 are moving with speed v. That is, since absolute motion 
cannot be detected, it is not possible to say which is really moving and which is at 
rest. By postulate 2, the speed of light from a moving source is independent of the 

t Annalen der Physik, vol. 17, 1905, p. 841. For a translation from the original German, see W. Perrett and G. B. Jeffery 
(trans.), The Prillciple of Relativity: A Collection of Origillal Memoirs on the Special alld General Theory of Relativity by 
H. A.  Lorentz, A .  Einstein, H.  Minkowski, and W. Weyl, Dover, New York, 1923. 

+ Einstein did not set out to explain the results of the Michelson-Morley experiment. His theory arose from his 
considerations of the theory of electricity and magnetism and the unusual property of electromagnetic waves 
that they propagate in a vacuum. In his first paper, which contains the complete theory of special relativity, he 
made only a passing reference to the Michelson-Morley experiment, and in later years he could not recall 
whether he was aware of the details of this experiment before he published his theory. 
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F I G  U R E 3 9 ·  1 (a) A stationary light 
source S and a stationary observer Rl' 
with a second observer R2 moving 
toward the source with speed v. (b) In the 
reference frame in which the observer R2 
is at rest, the light source S and observer 
Rl move to the right with speed v. If 
absolute motion cannot be detected, the 
two views are equivalent. Since the speed 
of light does not depend on the motion of 
the source, observer R2 measures the 
same value for that speed as observer R}" 
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motion of the source. Thus, looking at Figure 39-1b, we see that R2 measures the 
speed of light to be c, just as R1 does. This result is often considered as an alterna­
tive to Einstein's second postulate: 

Postulate 2 (alternate) : Every observer measures the same value c for the 
speed of light. 

This result contradicts our intuitive ideas about relative velocities. If a car 
moves at 50 km/h away from an observer and another car moves at 80 km/h 
in the same direction, the velocity of the second car relative to the first car is 
30 km/h. This result is easily measured and conforms to our intuition. However, 
according to Einstein's postulates, if a light beam is moving in the direction of the 
cars, observers in both cars will measure the same speed for the light beam. Our 
intuitive ideas about the combination of velocities are approximations that hold 
only when the speeds are very small compared with the speed of light. Even in 
an airplane moving with the speed of sound, to measure the speed of light accu­
rately enough to distinguish the difference between the results c and c + v, where 
v is the speed of the plane, would require a measurement with six-digit accuracy. 

3!1-3 The Lorentz Transformation 
-

Einstein's postulates have important consequences for measuring time intervals 
and space intervals, as well as relative velocities. Throughout this chapter, we 
will be comparing measurements of the positions and times of events (such as 
lightning flashes) made by observers who are moving relative to each other. We 
will use a rectangular coordinate system xyz with origin 0, called the 5 reference 
frame, and another system x' y' z' with origin 0 ' ,  called the 5 '  frame, that is mov­
ing with a constant velocity v relative to the 5 frame. Relative to the 5 '  frame, the 
5 frame is moving with a constant velocity -v. For simplicity, we will consider 
the 5' frame to be moving along the x axis in the positive x direction relative to 5.  
In each frame, we will assume that there are as many observers as are needed 
who are equipped with measuring devices, such as clocks and metersticks, that 
are identical when compared at rest (see Figure 39-2). 

We will use Einstein's postulates to find the general relation between the coor­
dinates x, y, and z and the time t of an event as seen in reference frame 5 and the 
coordinates x' ,  y ' ,  and z' and the time t' of the same event as seen in reference 
frame 5' ,  which is moving with uniform velocity relative to 5. We assume that 
the origins are coincident at time t = t' = O. The classical relation, called the 
Galilean transformation, is 

x = x ' + vt ' ,  y = y ' ,  z = z ' ,  t = t '  39-1a 

GALILEAN TRANSFORMATION 

The inverse transformation is 

x' = x - vt, y' = y, t' = t 39-1b 

These equations are consistent with experimental observations as long as v is 
much less than c. They lead to the familiar classical addition law for velocities. If 
a particle has velocity u, = dx/dt in frame 5, its velocity in frame 5' is 

dx' dx ' dx u ' = - = - = - - v = u - v 
x dt ' dt dt x 

39-2 
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F I G  U R E 3 9 • 2 Coordinate reference 
frames 5 and 5' moving with relative 
speed v. In each frame, there are 
observers with metersticks and clocks 
that are identical when compared at rest. 
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If we differentiate this equation again, we find that the acceleration of the particle 
is the same in both frames: 

du du ' 
a, = d;' = dt � = a: 

It should be clear that the Galilean transformation is not consistent with Ein­
stein's postulates of special relativity. If light moves along the x axis with speed 
u� = c in 5 ', these equations imply that the speed in 5' is u, = c + v rather than 
u, = c, which is consistent with Einstein's postulates and with experiment. The 
classical transformation equations must therefore be modified to make them con­
sistent with Einstein's postulates. We will give a brief outline of one method of 
obtaining the relativistic transformation. 

We assume that the relativistic transformation equation for x is the same as the 
classical equation (Equation 39-1a) except for a constant multiplier on the right 
side. That is, we assume the equation is of the form 

x = y(x '  + vt ' )  39-3 

where y is a constant that can depend on v and c but not on the coordinates. The 
inverse transformation must look the same except for the sign of the velocity: 

x '  = y(x - vt) 39-4 

Let us consider a light pulse that starts at the origin of 5 at t = O. Since we have 
assumed that the origins are coincident at t = t' = 0, the pulse also starts at the 
origin of 5' at t' = O. Einstein's postulates require that the equation for the x com­
ponent of the wave front of the light pulse is x = ct in frame 5 and x' = ct' in 
frame 5 ' .  Substituting ct for x and ct' for x' in Equation 39-3 and Equation 39-4, 
we obtain 

ct = y(ct '  + vt ' )  = y ( c  + v)t ' 39-5 

and 

ct ' = y (ct - vt) = y ( c  - v)t  39-6 

We can eliminate the ratio t' / t from these two equations and determine y. Thus, 

1 
y =

R2 
1 - -c2 

39-7 

Note that y is always greater than 1 ,  and that when v is much less than c, y = l. 
The relativistic transformation for x and x' is therefore given by Equation 39-3 
and Equation 39-4, with y given by Equation 39-7. We can obtain equations for t 
and t' by combining Equation 39-3 with the inverse transformation given by 
Equation 39-4. Substituting x = y(x' + vt ' )  for x in Equation 39-4, we obtain 

x' = y[y(x ' + vt ' )  - vtJ 39-8 

which can be solved for t in terms of x' and t ' .  The complete relativistic transfor­
mation is 

1 27 1  
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x = y(x '  + vt ' ) ,  y = y ' , z = z ' 

( VX ' ) 
t = Y t '  + 7 

The inverse transformation is 

x' = y(x - vt), y ' = y, z '  = z 

, ( VX) t = y  t - � 

39-9 

39-10 

LORENTZ TRANSFORMATION 

39-11 

39-12 

The transformation described by Equation 39-9 through Equation 39-12 is called 
the Lorentz transformation. It relates the space and time coordinates x, y, z, and t 
of an event in frame 5 to the coordinates x' ,  y ' ,  z ' , and t' of the same event as seen 
in frame 5 ' ,  which is moving along the x axis with speed v relative to frame 5. 

We will now look at some applications of the Lorentz transformation. 

Time Dilation 

Consider two events that occur at a single point x� at times t� and t� in frame 5 ' .  
We can find the times t l  and t2 for these events in  5 from Equation 39-10. We have 

and 

so 

The time between events that happen at the same place in a reference frame is 
called proper time tp' In this case, the time interval t� - t� measured in frame 5 '  
is proper time. The time interval tlt measured in any other reference frame is 
always longer than the proper time. This expansion is called time dilation: 

SPATIAL SEPARAr.ION AND TEMPORAL SEPARATION 

OF Two EVENTS 

39-13 

TIME DilATION 

E X AMPL E 3 9 · '  

Two events occur at the same point x� at times t� and t� in frame S',  which is 
traveling at speed v relative to frame S. (a) What is the spatial separation of 
these events in frame S? (b) What is the temporal separation of these events in 
frame S?  

P I C  T U R E T H E  P R O  B L E M The spatial separation in 5 i s  x2 - XI' where X2 and Xl 
are the coordinates of the events in 5, which are found using Equation 39-9. I 
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(a) 1 .  The position Xl in 5 is given by Equation 39-9 with Xl = 'Y(x� + vt{ ) 
x{ = x� : 

2. Similarly, the position x2 in 5 is given by: 

3. Subtract to find the spatial separation: 

(b) Using the time dilation formula, relate the two time in­
tervals. The two events occur at the same place in 5' ,  so 
the proper time between the two events is Lltp = t� - t{ : 

X2 = 'Y(x� + vt� ) 

REM ARK 5 Dividing the Part (a) result by the Part (b) result gives t::..x/ t::..t = v. 
The spatial separation of these two events in 5 is the distance a fixed point, such 

• as x� in 5 ' ,  moves in 5 during the time interval between the events in 5. 

We can understand time dilation directly from Einstein's postulates without 
using the Lorentz transformation. Figure 39-3a shows an observer A '  a distance D 
from a mirror. The observer and the mirror are in a spaceship that is at rest in 
frame 5' .  The observer explodes a flash gun and measures the time interval t::..t '  
between the original flash and his seeing the return flash from the mirror. Be­
cause light travels with speed c, this time is 

Llt '  
2D 

c 

We now consider these same two events, the original flash of light and the re­
ceiving of the return flash, as observed in reference frame 5, in which observer A '  
and the mirror are moving t o  the right with speed v, as  shown in Figure 39-3b. 

Mirror 
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X2 x , X Xl 
(a) (b) 

The events happen at two different places Xl and x2 in frame 5. During the time 
interval t::..t (as measured in 5) between the original flash and the return flash, 
observer A '  and his spaceship have moved a horizontal distance v t::.. t. In Figure 
39-3b, we can see that the path traveled by the light is longer in 5 than in 5 ' .  How­
ever, by Einstein's postulates, light travels with the same speed c in frame 5 as it 
does in frame 5 ' .  Because light travels farther in 5 at the same speed, it takes 
longer in 5 to reach the mirror and return. The time interval in 5 is thus longer 
than it is in 5 ' .  From the triangle in Figure 39-3c, we have 

(c) 

F I G  U R E 39 · 3  (a) Observer A '  and the 
mirror are in a spaceship at rest in frame 
5 ' .  The time it takes for the light pulse to 
reach the mirror and return is measured 
by A' to be 2Dlc. (b) In frame 5, the 
spaceship is moving to the right with 
speed v. If the speed of light is the same 
in both frames, the time it takes for the 
light to reach the mirror and return is 
longer than 2Dlc in 5 because the 
distance traveled is greater than 2D. (c) A 
right triangle for computing the time ilt 

in frame 5. 
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M = -=== � 
Using M '  = 20/c, we obtain 

How LONG Is A ONE-HoUR NAP? E X AMPL E 3 9 - 2  T r y  I t  Y o u r s e l f  

Astronauts in a spaceship traveling at v = O.6c relative to the earth sign off 
from space control, saying that they are going to nap for 1 h and then call back. 
How long does their nap last as measured on the earth? 

P I C  T U RE T H E P R O  B L E M Because the astronauts go to sleep and wake up at 
the same place in their reference frame, the time interval for their nap of 1 h as 
measured by them is proper time. In the earth's reference frame, they move a con­
siderable distance between these two events. The time interval measured in the 
earth's frame (using two clocks located at those events) is longer by the factor 'Y. 

Cover the column to the right and try these on your own before looking at the answers. 

Steps Answers 

1. Relate the time interval measured on the earth M to the M = 'Y Mp 
proper time Mp. 

2. Calculate 'Y for v = O.6c. 'Y = 1 .25 
3. Substitute to calculate the time of the nap in the earth's M = 'Y Mp = 1 1 .25 h 1 

frame. 

EX E R C I S  E If the spaceship is moving at v = O.Sc, how long would a 1 h nap last 
• as measured on the earth? (Answer 1 .67 h) 

Length Contraction 

A phenomenon closely related to time dilation is length contraction. The length 
of an object measured in the reference frame in which the object is at rest is called 
its proper length Lp. In a reference frame in which the object is moving, the mea­
sured length is shorter than its proper length. Consider a rod at rest in frame 5 '  
with one end a t  x� and the other end a t  x; . The length of the rod in this frame is 
its proper length Lp = x� - x; . Some care must be taken to find the length of the 
rod in frame 5. In this frame, the rod is moving to the right with speed v, the 
speed of frame 5 ' .  The length of the rod in frame 5 is defined as L = x2 - Xl ' 
where x2 is the position of one end at some time t2, and x1 is the position of the 
other end at the same time t1 = t2 as measured in frame 5. Equation 39-11 is conve­
nient to use to calculate x2 - Xl at some time t because it relates X and x ' to t, 
whereas Equation 39-9 is not convenient because it relates X and x' to t ' :  

and 
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Since t2 = t1, we obtain 

or 

X� - x{ = Y(X2 - Xl ) 

X2 - Xl = � (X� - x{ ) = (X� - x{ )) 1 - �: 

1 102 L = - L = L  1 - -y P P c2 39-14 

LENGTH CONTRACTION 

Thus, the length of a rod is smaller when it is measured in a frame in which it 
is moving. Before Einstein's paper was published, Hendrik A. Lorentz and 
George F. FitzGerald tried to explain the null result of the Michelson-Morley 
experiment by assuming that distances in the direction of motion contracted by 
the amount given in Equation 39-14. This length contraction is now known as the 
Lorentz-FitzGerald contraction. 

THE LENGTH OF A MOVING METERSTICK E X AMPL E 3 9 · 3  

A stick that has a proper length of 1 m moves in a direction along its length 
with speed v relative to you. The length of the stick as measured by you is 
0.914 m. What is the speed v ?  

P I C  T U R E T H E P R O  B L E M Since both L and Lp are given, we can find v directly 
from Equation 39-14. 

1 .  Equation 39-14 relates the lengths L and Lp and the 
speed v: 

2. Solve for v: 

102 L = L  1 - -p c2 

r:-L2 v = c\f 1 - U. = C 
p 

An interesting example of time dilation or length contraction is afforded by 
the appearance of muons as secondary radiation from cosmic rays. Muons decay 
according to the statistical law of radioactivity: 

39-15 

where No is the original number of muons at time t 0, N(t) is the number 
remaining at time t, and T is the mean lifetime, which is approximately 2 fLS for 
muons at rest. Since muons are created (from the decay of pions) high in the 
atmosphere, usually several thousand meters above sea level, few muons should 
reach sea level. A typical muon moving with speed 0.9978c would travel only 
about 600 m in 2 fLS. However, the lifetime of the muon measured in the earth's 
reference frame is increased by the factor 1 /\11 - (V2/C2), which is 15 for this 
particular speed. The mean lifetime measured in the earth's reference frame is 
therefore 30 fLS, and a muon with speed 0.9978c travels approximately 9000 m 
in this time. From the muon's point of view, it lives only 2 fLS, but the atmosphere 
is rushing past it with a speed of 0.9978c. The distance of 9000 m in the earth's 

(0.914 m)2 
1 - ( 1 m)2 = I 0.406c I 
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frame is thus contracted to only 600 m in the muon's frame, as indi­
cated in Figure 39-4. 

It is easy to distinguish experimentally between the classical and 
relativistic predictions of the observation of muons at sea level. Sup­
pose that we observe 108 muons at an altitude of 9000 m in some 
time interval with a muon detector. How many would we expect to 
observe at sea level in the same time interval? According to the non­
relativistic prediction, the time it takes for these muons to travel 
9000 m is (9000 m) / (0.998c) = 30 f1$, which is 15 lifetimes. Substitut­
ing No = 108 and t = 157 into Equation 39-15, we obtain 

N = 108e-IS = 30.6 

Muon 

We would thus expect all but about 31 of the original 100 million muons to decay 
before reaching sea level. 

According to the relativistic prediction, the earth must travel only the con­
tracted distance of 600 m in the rest frame of the muon. This takes only 2 f.Ls = 1 7. 
Therefore, the number of muons expected at sea level is 

Thus, relativity predicts that we would observe 36.8 million muons in the same 
time interval. Experiments of this type have confirmed the relativistic predictions. 

The Relativistic Doppler Effect 

For light or other electromagnetic waves in a vacuum, a distinction between 
motion of source and receiver cannot be made. Therefore, the expressions we 
derived in Chapter 15 for the Doppler effect cannot be correct for light. The 
reason is that in that derivation, we assumed the time intervals in the reference 
frames of the source and receiver to be the same. 

Consider a source moving toward a receiver with velocity v, relative to the 
receiver. If the source emits N electromagnetic waves in a time t..tR (measured in 
the frame of the receiver), the first wave will travel a distance c t..tR and the source 
will travel a distance v t..tR measured in the frame of the receiver. The wavelength 
will be 

A '  

The frequency f'  observed by the receiver will therefore be 

f' 
_ � _ _  c

_ � _ 1 N 

A '  c - v MR l - (vlc) MR 

If the frequency of the source is fa, it will emit N = fa flts waves in the time flts 
measured by the source. Then 

N 1 fo Ms 
1 - (vic) MR 

f' = 
1 

1 - (vic) MR 

Here t..ts is the proper time interval (the first wave and the Nth wave are emitted 
at the same place in the source's reference frame). Times flts and t..tR are related 
by Equation 39-13 for time dilation: 

(a) 

Muon 
o 

(b) 

v 

F I G  U R E  3 9 · 4  Although muons are 
created high above the earth and their 
mean lifetime is only about 2 p.s when at 
rest, many appear at the earth's surface. 
(a) In the earth's reference frame, a 
typical muon moving at 0.998c has a mean 
lifetime of 30 p.s and travels 9000 m in 
this time. (b) In the reference frame of 
the muon, the distance traveled by the 
earth is only 600 m in the muon's 
lifetime of 2 p.s. 
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Thus, when the source and the receiver are moving toward one another we 
obtain 

f' 
fo 1 

1 - (vlc) y 
VI - (vic? 

1 - (vlc) 
fo = 

1 + (vic) 
----fr approaching 39-16a 
1 - (vic) 

0' 

This differs from our classical equation only in the time-dilation factor. It is left as 
a problem (Problem 27) for you to show that the same results are obtained if the 
calculations are done in the reference frame of the source. 

When the source and the receiver are moving away from one another, the 
same analysis shows that the observed frequency is given by 

f' VI - (vlc)2 
1 + (vic) 

fo = 
1 - (vic) ---'--...:...fr receding 
1 + (vic) 

0
' 

39-16b 

An application of the relativistic Doppler effect is the redshift observed in the 
light from distant galaxies. Because the galaxies are moving away from us, 
the light they emit is shifted toward the longer red wavelengths. The speed of the 
galaxies relative to us can be determined by measuring this shift. 

CONVINCING THE JUDGE E X AMPL E 3 9 · 4  P u t  I t  i n  C o n t e x t  

As part of a community volunteering option on your campus, you are spend­
ing the day shadowing two police officers. You have just had the excitement of 
pulling over a car that went through a red light. The driver claims that the red 
light looked green because the car was moving toward the stoplight, which 
shifted the wavelength of the observed light. You quickly do some calcula­
tions to see if the driver has a reasonable case or not. 

P I C  T U RE T H E P R O  B L E M We can use the Doppler shift formula for approach­
ing objects in Equation 39-16a. This will tell us the velocity, but we need to know 
the frequencies of the light. We can make good guesses for the wavelengths of 
red light and green light and use the definition of the speed of a wave c = fA to 
determine the frequencies. 

1. The observer is approaching the light source, so we use f' = 
the Doppler formula (Equation 39-16a) for approaching 
sources: 

1 + (vic) 
1 - (vi c/o 

2. Substitute cl A for f, then simplify: 
c 

A ' 
1 + (vic) c 
1 - (vic) ,10 

3. Cross multiply and solve for v/c: 

1 + (vic) 
1 - (vic) 

(AO)2( 1 - �) = ( ,\ ' ) 2(1 + �) 
(,10)2 - (,\ ' )2 = [(,10)2 + ( A ' )2] (�) 

v (,10)2 - (A '  )2 

c (,10)2 + ( ,\ ' )2 

1 - (A '  / Ao? 
1 + (,\ '  / ,10)2 
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A ' 
= 

675 nm 
= 0.931 

AO 725 nm 
4. The values for the wavelengths for the colors of the 

visible spectrum can be found in Table 30-1 .  The wave­
lengths for red are 725 nm or longer, and the wave­
lengths for green are 675 nm or shorter. Solve for the 
speed needed to shift the wavelength from 725 nm to 
675 nm: 

v 1 - 0.9312 
= 0.0713 

c 1 + 0.9312 

V = 0.0713c = 2.14 X 107 mls = 4.79 X 107 mi/h 

5. This speed is beyond any possible speed for a car: The driver does not have a plausible case. 

FINDING SPEED FROM THE DOPPLER SHIFT E X AMPL E 3 9 · 5  

The longest wavelength of light emitted by hydrogen in the Balmer series is 
.Ao = 656 nm. In light from a distant galaxy, this wavelength is measured to be 
.A' = 1458 nm. Find the speed at which the distant galaxy is receding from 
the earth. 

T r y  I t  Y o u r s e l f  

Cover the column to the right and try these on your own before looking at the answers. 

Steps 

1. Use Equation 39-16b to relate the speed v to the received 
frequency f' and the emitted frequency fa· 

Answers 

f' 
1 - (vic) 

2. Substitute f' = c I A' and fa = ciAo and solve for v/c. 
v 
c 

1 + (vlc/o 

1 - (Aol A ' )2 

1 + (Aol A ' ) 2 
= 0.664 

39 .4 Clock Synchronization 
and Simultaneity 

v = I 0.664c I 

We saw in Section 39-3 that proper time is the time interval between two events 
that occur at the same point in some reference frame. It can therefore be mea­
sured on a single clock. (Remember, in each frame there is a clock at each point in 
space, and the time of an event in a given frame is measured by the clock at that 
point.) However, in another reference frame moving relative to the first, the same 
two events occur at different places, so two clocks are needed to record the times. 
The time of each event is measured on a different clock, and the interval is found 
by subtraction. This procedure requires that the clocks be synchronized. We will 
show in this section that 

Two clocks that are synchronized in one reference frame are typically 
not synchronized in any other frame moving relative to the first frame. 

SYNCHRONIZED CLOCKS 

Here is a corollary to this result: 

Two events that are simultaneous in one reference frame typically are 
not simultaneous in another frame that is moving relative to the first.t 

SIMULTANEOUS EVENTS 

t This is true lIlIless the x coordinates of the two 
events are equal, where the x axis is parallel with 
the relative velocity of the two frames. 
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Comprehension of these facts usually resolves all relativity paradoxes . Unfortu­
nately, the intuitive (and incorrect) belief that s imultaneity is an absolute relation 
is difficult to overcome . 

Suppose we have two clocks at rest  at point A and point B a dis tance L apart in 
frame S. How can we synchronize these two clocks? If an observer at A looks at 
the clock at B and sets her clock to read the same time, the clocks will not be syn­
chronized because of the time Llc it takes light to travel from one clock to another. 
To synchronize the clocks, the observer at A must  set her clock ahead by the 
time Lie. Then she will see that the clock at B reads a time that is Lie behind the 
time on her clock, but she will calculate that the clocks are synchronized when 
she allows for the time Lie for the light to reach her. Any other observers in 5 
(except those equidistant from the clocks)  will see the clocks reading different 
times, but they will also calculate that the clocks are synchronized when they 
correct for the time it takes the light to reach them. An equivalent method for 
synchronizing two clocks would be for an observer C at a point midway between 
the clocks to send a light s ignal and for the observers at A and B to set their clocks 
to some prearranged time when they receive the s ignal. 

We now examine the question of simultaneity. Suppose A and B agree to ex­
plode flashguns at to (having previously synchronized the ir clocks). Observer C 
will see the light from the two flashes at the same time, and because he is equi­
distant from A and B, he will conclude that the flashes were simultaneous . Other 
observers in frame 5 will see the light from A or B firs t, depending on their 
location, but after correcting for the time the light takes to reach them, they also 
will conclude that the flashes were s imultaneous . We can thus define s imultane­
ity as follows : 

Two events in a reference frame are s imultaneous if light signals from the 
events reach an observer halfway between the events at the same time . 

DEFINITION-SIMULTANEITY 

To show that two events that are simultaneous in frame 5 are not simultane­
ous in another frame 5' moving relative to 5, we will use an example introduced 
by Einstein. A train is moving with speed v past  a station platform. We will 
consider the train to be at rest in 5' and the platform to be at rest in S. We have 
observers A ' ,  B ' ,  and C at the front, back, and middle of the train. We now 
suppose that the train and p latform are s truck by lightning at the front and back 
of the train and that the lightning bolts are s imultaneous in the frame of the 
platform 5 (Figure 39-5) .  That is, an observer C on the platform halfway between 
the positions A and B, where the lightning strikes, sees the two flashes at the 
same time . It is convenient to suppose that the lightning scorches the train and 
platform so that the events can be eas ily located. Because C' is in the middle of 
the train, halfway between the p laces on the train that are scorched, the events 
are simultaneous in 5' only if C sees the flashes at the same time . However, the 
flash from the front of the train is seen by C' before the flash from the back of the 

5: S' Train 

c' A' 

C A 
Lp ,I I 

F I G  U R E 3 9 • 5 In frame S attached to 
the platform, simultaneous lightning 
bolts strike the ends of a train traveling 
with speed v. The light from these 
simultaneous events reaches observer C, 
standing midway between the events, at 
the same time. The distance between the 
bolts is Lp,platform' 
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train. We can understand this by considering the mo­
tion of C' as seen in frame 5 (Figure 39-6) .  By the time 
the light from the front flash reaches C', C' has moved 
some distance toward the front flash and some dis­
tance away from the back flash. Thus, the light from 
the back flash has not yet reached C', as indicated in 
the figure . Observer C' must therefore conclude that 
the events are not simultaneous and that the front of 
the train was struck before the back. Furthermore, all 
observers in 5' on the train will agree with C' when 
they have corrected for the time it takes the light to 
reach them. 

Figure 39-7 shows the events of the lightning bolts 
as seen in the reference frame of the train (5'). In this 
frame the platform is moving, so the distance 
between the burns on the platform is contracted. The 
platform is shorter than it is in 5, and, since the train is 
at rest, the train is longer than its contracted length in 
5. When the lightning bolt strikes the front of the train 
at A' ,  the front of the train is at point A, and the back 
of the train has not yet reached point B. Later, when 
the lightning bolt strikes  the back of the train at B', the 
back has reached point B on the platform. 

The time discrepancy of two clocks that are syn­
chronized in frame 5 as seen in frame 5' can be found 
from the Lorentz transformation equations. Suppose 
we have clocks at points Xl and x2 that are synchro­
nized in S. What are the times t1 and t2 on these clocks 
as observed from frame 5' at a time t�? From Equation 
39-12, we have 

( VX ) 
t� = '}' tl - -; 

and 

v 

v 

5' , , , , 

(b) 

v 
5' C' A' 

5 r-------------._��--_+----�3L._--------__, B C A 

.� e'" A'I v 
5' • 

• • @i?5 5 r: --------�----�--���._--�--���--------� I 

" 
I 

, 

B 

" , " 

C A 

" 

, I 

I ' r;c=:==t==:JJ---.v� J i 5' � LB� 'C' cd'i • ',j, � Ir--------------·B---'------'C�=----'---A··--===--------,] 

F I G  U R E 3 9 · 6  In frame 5 attached to the platform, the light from the 
lightning bolt at the front of the train reaches observer C', standing on 
the train at its midpoint, before the light from the bolt at the back of the 
train. Since C' is midway between the events (which occur at the front 
and rear of the train), these events are not simultaneous for him. 

F I G  U R E 3 9 · 7  The lightning bolts of 
Figure 39-5 as seen in frame 5' of the 
train. In this frame, the distance between 
A and B on the platform is less than 
Lp,platform' and the proper length of the 
train Lp,train is longer than Lp,platform' The 
first lightning bolt strikes the front of 
the train when A' and A are coincident. 
The second bolt strikes the rear of the 
train when B' and B are coincident. 
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Then 

Note that the chasing clock (at x2) leads the other (at Xl) by an amount that is 
proportional to their proper separation Lp = x2 - Xl' 

If two clocks are synchronized in the frame in which they are both at rest, 
in a frame in which they are moving along the line through both clocks, 
the chasing clock leads (shows a later time) by an amount 

v 
Ms = L -2 Pc 

where Lp is the proper distance between the clocks. 

39-17 

CHASING CLOCK SHOWS LATER TIME 

A numerical example should help clarify time dilation, clock synchronization, 
and the internal consistency of these results. 

SYNCHRONIZING CLOCKS EXAMPLE 39 · 6  

An observer in a spaceship has a flashgun and a mirror, as shown in Figure 39-3. 
The distance from the gun to the mirror is 15 light-minutes (written 15e'min) 
and the spaceship, at rest in frame S', travels with speed v = O.Se relative to 
a very long space platform that is at rest in frame S. The platform has two 
synchronized clocks, one clock at the position Xl of the spaceship when the 
observer explodes the flashgun, and the other clock at the position x2 of the 
spaceship when the light returns to the gun from the mirror. Find the time 

intervals between the events (exploding the flashgun and receiving the return 
flash from the mirror) (a) in the frame of the spaceship and (b) in the frame of 
the platform. (e) Find the distance traveled by the spaceship and (d) the 
amount by which the clocks on the platform are out of synchronization accord­
ing to observers on the spaceship. 

(a) 1. In the spaceship, the light travels from the gun to the 
mirror and back, a total distance 0 = 30 c·min. The 
time required is O/C: 

2. Since these events happen at the same place in the 
spaceship, the time interval is proper time: 

(b) 1 .  In frame 5, the time between the events is longer by 
the factor y :  

2. Calculate y: 

3. Use this value of y to calculate the time between the 
events as observed in frame 5: 

(c) In frame 5, the distance traveled by the spaceship is 
vM: 

A I 0 30 c·min 
30 . ut = - = = mm 

c c 

Mp = I 30 min I 
M = y Mp = y (30 min) 

1 1 1 5 
y= = = -- = -

\11 - (V2/C2) VI - (0.8)2  vo:36 3 

M = y Mp = � (30 min) = 1 50 min I 
X2 - Xl = v M = (0.8c)(50 min) = 1 40 c'min I 

1 28 1  
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(d) 1 .  The amount that the clocks on the platform are out 
of synchronization is related to the proper distance 
between the clocks Lp: 

v 
M = L-5 P C2 

2. The Part (c) result is the proper distance between the 
clocks on the platform: 

L = x - x = 40 comin p 2 I 

so 

v (0.8c) 
I I Ms = Lpc2 = (40 comin) -

c
- 2 - = 32 min 

R E M  A R K  5 Observers on the platform would say that the spaceship's clock is 
running slow because it records a time of only 30 min between the events, 

• whereas the time measured by observers on the platform is 50 min. 

Mirror 

T o 

1 

Figure 39-8 shows the situation 
viewed from the spaceship in 5'. The 
platform is traveling past the ship with 
speed 0.8c. There is a clock at point Xu 
which coincides with the ship when the 
flashgun is exploded, and another at 
point x2, which coincides with the ship 
when the return flash is received from 
the mirror. We assume that the clock at 
Xl reads 12:00 noon at the time of the 
light flash. The clocks at Xl and x2 are 
synchronized in 5 but not in 5'. In 5', 
the clock at x2, which is chasing the one 
at Xl' leads by 32 min; it would thus read 

.. ·...:;;V�.,:I=:::I �:!:::::!=s:!:::::!:=!:::c::!::::111 = 

Xl 

� 
12:00 12:32 

(a) 

12:32 to an observer in 5 I. When the spaceship coincides with x2, the clock there 
reads 12:50. The time between the events is therefore 50 min in 5. Note that 
according to observers in 5 I, this clock ticks off 50 min - 32 min = 18 min for a 
trip that takes 30 min in 5'. Thus, observers in 5' see this clock run slow by the 
factor 30/18 = 5/3. 

Every observer in one frame sees the clocks in the other frame run slow. 
According to observers in 5, who measure 50 min for the time interval, the time 
interval in 5' (30 min) is too small, so they see the single clock in 5' run too slow 
by the factor 5/3.  According to the observers in 5', the observers in 5 measure a 
time that is too long despite the fact that their clocks run too slow because the 
clocks in 5 are out of synchronization. The clocks tick off only 18 min, but the 
second clock leads the first clock by 32 min, so the time interval is 50 min. 

The Twin Paradox 

Homer and Ulysses are identical twins. Ulysses travels at high speed to a planet 
beyond the solar system and returns while Homer remains at home. When they 
are together again, which twin is older, or are they the same age? The correct 
answer is that Homer, the twin who stays at home, is older. This problem, with 
variations, has been the subject of spirited debate for decades, though there are 
very few who disagree with the answer. The problem appears to be a paradox be­
cause of the seemingly symmetric roles played by the twins with the asymmetric 
result in their aging. The paradox is resolved when the asymmetry of the twins' 
roles is noted. The relativistic result conflicts with common sense based on our 
strong but incorrect belief in absolute simultaneity. We will consider a particular 
case with some numerical magnitudes that, though impractical, make the calcu­
lations easy. 

Mirror 

T o 

1 
... ·-v-'!=I :::C::c!=::::::!S =:::�E21 =11 = 

Xl X 2 

G � 
12:18 12:50 

(b) 

F I G  U R E 3 9 · 8  Clocks on a platform as 
observed from the spaceship's frame of 
reference S'. During the time il.t' = 

30 min it takes for the platform to pass 
the spaceship, the clocks on the platform 
run slow and tick off (30 min)!y = 18 min. 
But the clocks are unsynchronized, with 
the chasing clock leading by Lpv!c2, 
which for this case is 32 min. The time it 
takes for the spaceship to go from Xl to X2' 
as measured on the platform, is therefore 
32 min + 18 min = 50 min. 
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y: , Homer y': v 

1 283 

Let planet P and Homer on the earth be at rest in reference 
frame 5 a distance Lp apart, as illustrated in Figure 39-9. We 
neglect the motion of the earth. Reference frames 5' and 5" are 
moving with speed v toward and away from the planet, 
respectively. Ulysses quickly accelerates to speed v, then 
coasts in 5' until he reaches the planet, where he quickly de­
celerates to a stop and is momentarily at rest in 5. To return, 
Ulysses quickly accelerates to speed v toward the earth and 
then coasts in 5" until he reaches the earth, where he quickly 
decelerates to a stop. We can assume that the acceleration 
(and deceleration) times are negligible compared with the 
coasting times. We use the following values for illustration: 

: �. � Ulysses going 

. i �§= I::c> 

• - " YL:::,,�t:�;��
---
-----

-
i 0' 

: Earth � <=(1 :;§ ::= 
, 

5" :- - ---- - - - - _______________ _ 

I X 
5' - - - - - ----------- - - - - - - - - - - - - - - - - - - ------- - - - - - - - - - - 1 - - �\"-

Lp � 

Lp = Slight-years (S c·y) and v = O .Sc. Then \11 - (V2/C2) = 3/5 and y = 5/3. 
It is easy to analyze the problem from Homer's point of view on the earth. 

According to Homer's clock, Ulysses coasts in 5' for a time Lpi v = 10 Y and in 5" 
for an equal time. Thus, Homer is 20 y older when Ulysses returns. The time 
interval in 5' between Ulysses's leaving the earth and his arriving at the planet is 
shorter because it is proper time. The time it takes to reach the planet by 
Ulysses's clock is 

!It 10 Y !It' 6 = Y = 
5/3 

= Y 

Since the same time is required for the return trip, Ulysses will have recorded 
12 y for the round trip and will be S y younger than Homer upon his return. 

From Ulysses's point of view, the distance from the earth to the planet is 
contracted and is only 

Lp S c'y 
L' = - = --= 4.S c'y y 5/3 

At v = 0.8c, it takes only 6 y each way. 
The real difficulty in this problem is for Ulysses to understand why his 

twin aged 20 y during his absence. If we consider Ulysses as being at rest 
and Homer as moving away, Homer 's clock should run slow and measure only 
3/5(6 y) = 3.6 Y. Then why shouldn't  Homer age only 7.2 y during the round 
trip? This, of course, is the paradox. The difficulty with the analysis from the 
point of view of Ulysses is that he does not remain in an inertial frame. What 
happens while Ulysses is stopping and starting? To investigate this problem in 
detail, we would need to treat accelerated reference frames, a subject dealt with 
in the study of general relativity and beyond the scope of this book. However, we 
can get some insight into the problem by having the twins send regular signals to 
each other so that they can record the other 's age continuously. If they arrange to 
send a signal once a year, each can determine the age of the other merely by 
counting the signals received. The arrival frequency of the signals will not be 
1 per year because of the Doppler shift. The frequency observed will be given by 
Equation 39-16a and Equation 39-1 6b. Using vic = O .S and v2 / c2 = 0.64, we have 
for the case in which the twins are receding from each other 

VI - (V2/C2) VI 0 64 1 1'= it - . it=-it 1 + ( v/c) 0 = 
1 + 0.8 0 3 0 

When they are approaching, Equation 39-16a gives f' = 3 /0' 
Consider the situation first from the point of view of Ulysses. During the 6 y 

it takes him to reach the planet (remember that the distance is contracted in his 
frame), he receives signals at the rate of � signal per year, and so he receives 
2 signals. As soon as Ulysses turns around and starts back to the earth, he begins 

F I G  U R E 3 9 • 9 The twin paradox. The 
earth and a distant planet are fixed in 
frame S. Ulysses coasts in frame 5' to the 
planet and then coasts back in frame 5". 
His twin Homer stays on the earth. When 
Ulysses returns, he is younger than his 
twin. The roles played by the twins are 
not symmetric. Homer remains in one 
inertial reference frame, but Ulysses 
must accelerate if he is to return home. 
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to receive 3 signals per year. In the 6 y it takes him to return he receives 18 sig­
nals, giving a total of 20 for the trip. He accordingly expects his twin to have aged 
20 years. 

We now consider the situation from Homer's point of view. He receives 
signals at the rate of � signal per year not only for the 10 y it takes Ulysses 
to reach the planet but also for the time it takes for the last signal sent by Ulysses 
before he turns around to get back to the earth. (He cannot know that Ulysses has 
turned around until the signals begin reaching him with increased frequency.) 
Since the planet is 8 light-years away, there is an additional 8 y of receiving sig­
nals at the rate of � signal per year. During the first 18 y, Homer receives 6 signals. 
In the final 2 y before Ulysses arrives, Homer receives 6 signals, or 3 per year. 
(The first signal sent after Ulysses turns around takes 8 y to reach the earth, 
whereas Ulysses, traveling at 0.8e, takes 10 y to return and therefore arrives just 
2 y after Homer begins to receive signals at the faster rate.) Thus, Homer expects 
Ulysses to have aged 12 y. In this analysis, the asymmetry of the twins' roles is 
apparent. When they are together again, both twins agree that the one who has 
been accelerated will be younger than the one who stayed home. 

The predictions of the special theory of relativity concerning the twin paradox 
have been tested using small particles that can be accelerated to such large 
speeds that y is appreciably greater than 1. Unstable particles can be accelerated 
and trapped in circular orbits in a magnetic field, for example, and their lifetimes 
can then be compared with those of identical particles at rest. In all such experi­
ments, the accelerated particles live longer on the average than the particles at 
rest, as predicted. These predictions have also been confirmed by the results of 
an experiment in which high-precision atomic clocks were flown around the 
world in commercial airplanes, but the analysis of this experiment is complicated 
due to the necessity of including gravitational effects treated in the general 
theory of relativity. 

3!1-5 The Velocity Transformation 

We can find how velocities transform from one reference frame to another by 
differentiating the Lorentz transformation equations. Suppose a particle has 
velocity u� = dx' / dt' in frame 5', which is moving to the right with speed v 
relative to frame S. The particle's velocity in frame 5 is 

dx 
dt 

From the Lorentz transformation equations (Equation 39-9 and Equation 39-1 0) ,  
we have 

dx = y(dx' + v dt' ) 

and 

( V dX' ) 
dt = y dt' + � 

The velocity in 5 is thus 

dx' 
dx y(dx' + vdt' ) 

-+v u' + v dt' 
U

x 
- x 
dt (

d' 
v dX' ) v dx' V U' 

Y t +-- 1+-- 1 + __ x 
e2 e2 dt' e2 
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If a particle has components of velocity along the y or z axes, we can use the same 
relation between dt and dt', with dy = dy' and dz = dz', to obtain 

and 

dy' (
d ' v dX' ) 

I' t + --
2

-
c 

u' z 
U = ----­

z ( vu; ) 
I' 1 + ­

c2 

dy' 

dt' ( V dX' ) 
I' 1 +--

c2 dt' 

u' y ( VU� ) 
1'1+--' 

c2 

The complete relativistic velocity transformation is 

u; + v 
u = X vu' 

1 + __ 
x 

c2 

39-1Sa 

U' 
U = Y 

Y ( vu� ) 
1'1+-' 

c2 

39-1Sb 

u' z 
U = ( vu� ) z 

1'1+--' 
c2 

39-1Sc 

RELATIVISTIC VELOCITY TRANSFORMATION 

The inverse velocity transformation equations are 

u' x 

u' 
y 

U' z 

u - v x 
vu 

1 __ x 

c2 

( VU ) 
y1- --t 

( VU ) 
y1- --t 

39-19a 

39-19b 

39-19c 

These equations differ from the classical and intuitive result ut = u; + v, uy = u;, 
and Uz = u: because the denominators in the equations are not equal to 1. When 
v and u; are small compared with the speed of light c, I' = 1 and vu; / c2 < < 1. 
Then the relativistic and classical expressions are the same. 

RElATIVE VELOCITY AT NONREIATiVISTIC SPEEDS EXAMPLE 39 - 7  

A supersonic plane moves away from you along the x axis with speed 1000 mls 
(about 3 times the speed of sound) relative to you. A second plane moves along 
the x axis away from you, and away from the first plane, at speed 500 mls 
relative to the first plane. How fast is the second plane moving relative to you? 

1 285 
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P I C  T U R E T H E  P R O  B L E M These speeds are so small compared with e that we 
expect the classical equations for combining velocities to be accurate. We show 
this by calculating the correction term in the denominator of Equation 39-18a . Let 
frame 5 be your rest frame and frame 5' be moving with velocity v = 1000 m/s. 
The first plane is then at rest in frame 5', and the second plane has velocity 
u� = 500 mls in 5'. 

1. Let 5 and 5' be the reference frames of you and the first 
plane, respectively. Also, let u, and u� be the velocities 
of the second plane relative to 5 and 5', respectively. 
Equation 39-18a can be used to find uX' The velocity of 
the second plane relative to you is v: 

2. If the correction term in the denominator is neglgible, 
Equation 39-18a gives the classical formula for combin­
ing velocities. Calculate the value of this correction term: 

u = x 

vu' 
x 

u� + v 
vu' 

1 + __ x 
e2 

(1000)(500) -12 
(3 X 108)2 

= 5.6 X 10 

u = u' + v x x 3. This correction term is so small that the classical and 
relativistic results are essentially the same: 

= 500 mls + 1000 mls = 1 1500 mls 1 
RELATIVE VELOCITY AT RELATIVISTIC SPEEDS EXAMPLE 39 · 8  

Work Example 39-7 if  the first plane moves with speed v = D.8e relative to you 
and the second plane moves with the same speed D.8e relative to the first plane. 

P I C  T U R E T H E P R O  B L E M These speeds are not small compared with e, so we 
use the relativistic expression (Equation 39-18a) .  We again assume that you are at 
rest in frame 5 and the first plane is at rest in frame 5' that is moving at v = 0.8e 
relative to you. The velocity of the second plane in 5' is u; = 0.8e. 

Use Equation 39-18a to calculate the speed of the second 
plane relative to you: 

u; + v 
vu' 

1 + __ 
x 

e2 

The result in Example 39-8 is quite different from the classically expected 
result of 0.8e + 0.8e = 1 .6e. In fact, it can be shown from Equations 39-18 that if 
the speed of an object is less than e in one frame, it is less than e in all other frames 
moving relative to that frame with a speed less than e. (See Problem 23.) We will 
see in Section 39-7 that it takes an infinite amount of energy to accelerate a parti­
cle to the speed of light. The speed of light e is thus an upper, unattainable limit 
for the speed of a particle with mass. (There are massless particles, such as 
photons, that always move at the speed of light.) 

RELATIVE SPEED OF A PHOTON EXAMPLE 39 · 9  

A photon moves along the x axis in frame 5', with speed u; = e. What is its 
speed in frame S? 

0.8e + 0.8e 1.6e � 
(0.8e)(O.8e) 

= 
1 .64 

= � 
1+ ----

e2 

The speed in 5 is given by Equation 39-18a: 
u� + v u = x vu' 

1 + __ x 
e2 

e + v 
ve 

1 +­
e2 

e + v 
v 

1 + ­
e 

e+v r::l 
1 

= L..:J 
- (e + v) 
e 
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R E M  A RK 5 The speed in both frames is e, independent of v. This is in accord 
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• with Einstein's postulates. 

• 

ROCKETS PASSING IN OPPOSITE DIRECTIONS EXAMPLE 39 · 10 

Two spaceships, each 100 m long when measured at rest, travel toward each 
other with speeds of  0.85c relative to the earth. (a) How long is each spaceship 
as measured by someone on the earth? (b) How fast is each spaceship traveling 

as measured by an observer on one of the spaceships? (e) How long is one 
spaceship when measured by an observer on one of the spaceships? (d) At time 
t = 0 on the earth, the front ends of the ships are together as they just begin to 
pass each other. At what time on the earth are their back ends together? 

5' : , , , 
v = O.SSe 

F I G U R E 3 9 - 1 0  

Ux = - O.SSe 

PIC T U R E  T H E  P R O B L E M  (a) The 
length of each spaceship as measured 
on the earth is the contracted length 
\11 - (viJe2) Lp (Equation 39-14), 
where v1 is the speed of either space­
ship. To solve Part (b), let the earth be in 
frame 5, and the spaceship on the left 
be in frame 5' moving with velocity 
v = 0.85e relative to S. Then the space­
ship on the right moves with velocity 
Ux = -0.85e, as shown in Figure 39-10. 
(e) The length of one spaceship as seen 

by the other is VI - (vVe2) Lp, where 
v2 is the speed of one spaceship relative 
to the other. 

- - - - _. - - - - - - - - - - - - - - - _ .  - - - - - - - - - - ---.. �- - - - - - - - - - - - - - - _ .  - - - - - - - - - - - - - - - - - - - - --

5 

(a) The length of each spaceship in the earth's frame is 
the proper length divided by y: 

(b) Use the velocity transformation formula (Equa­
tion 39-19a) to find the velocity u; of the spaceship 
on the right as seen in frame 5': 

(e) In the frame of the left spaceship, the right spaceship 
is moving with speed v2 = lu;1 = 0 .987e. Use this 
to calculate the contracted length of the spaceship on 
the right: 

(d) If the front ends of the spaceships are together at 

t = a on the earth, their back ends will be together 
after the time it takes either spaceship to move the 
length of the spaceship in the earth's frame: 

39.& Relativistic Momentum 

Earth 

r:-vr � (0 85e? 
L = -y 1 - � Lp = 1 -

. 
e2 

( 100 m) = 1 52.7 m 1 
Ux - v 

u' = ---'.'----x vu 
1 _

_ x 
e2 

-0.85e - 0.85e -1.70e 1 1 
(0.85e) ( -0.85e) = 

1 .7225 
= -0.987e 

1 - -'----'-----'­
e2 

(0.987e)2 1 
1 -

e2 ( 100 m) = 16.1 m 1 
L 52.7 m 52. 7 m 1 7 1 t = 
VI 

= 
0.85e 

= 
(0.85) (3 X 108 m/s) 

= 2.07 X 10- s 

------� ...... �-----

We have seen in previous sections that E instein's postulates require important 
modifications in our ideas of simultaneity and in our measurements of time and 
length. E instein's postulates also require modifications in our concepts of mass, 
momentum, and energy. In classical mechanics, the momentum of a particle is 
defined as the product of its mass and its velocity, mu, where u is the velocity. In 
an isolated system of particles, with no net force acting on the system, the total 
momentum of the system remains constant. 
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We can see from a simple thought experiment that the quantity rmiui is not 
conserved in an isolated system. We consider two observers: observer A in refer­
ence frame 5 and observer B in frame 5 I, which is moving to the right in the x di­
rection with speed v with respect to frame 5. Each has a ball of mass m. The two 
balls are identical when compared at rest. One observer throws his ball up with a 
speed Uo relative to him and the other throws his ball down with a speed Uo rela­
tive to him, so that each ball travels a distance L, makes an elastic collision with 
the other ball, and returns. Figure 39-11 shows how the collision looks in each ref­
erence frame. Classically, each ball has vertical momentum of magnitude muo' 

Since the vertical components of the momenta are equal and opposite, the total 
vertical component of momentum is zero before the collision. The collision 
merely reverses the momentum of each ball, so the total vertical momentum is 
zero after the collision. 

Relativistically, however, the vertical components of the velocities of the two 
balls as seen by either observer are not equal and opposite. Thus, when they are 
reversed by the collision, classical momentum is not conserved. Consider the col­
lision as seen by A in frame 5. The velocity of his ball is UAy = +uo' Since the 
velocity of B's ball in frame 5' is u�'\' = 0, U�y = -uo, the y component of the veloc­
ity of B's ball in frame 5 is uBy = -uo/ I' (Equation 39-18b). Thus, if the classical 
expression mu is taken as the definition of momentum, the vertical components 
of momentum of the two balls are not equal and opposite as seen by observer A. 
Since the balls are reversed by the collision, classical momentum is not con­
served .  Of course, the same result is observed by B. In the classical limit, when 
U is much less than c, y is approximately 1, and the momentum of the system is 
conserved as seen by either observer. 

The reason that the total momentum of a system is important in classical 
mechanics is that it is conserved when there are no external forces acting on the 
system, as is the case in collisions. But we have just seen that r miui is conserved 
only in the approximation that U « c. We will define the relativistic momentum 
p of a particle to have the following properties: 

1. In collisions, p is conserved .  

2 .  As  u/c approaches zero, p approaches mu. 

We will show that the quantity 

--> 
mu 

p 
= 

-�-:==U=2 
1 - -

c2 

39-20 

RELATIVISTIC MOMENTUM 

is conserved in the elastic collision shown in Figure 39-11.  Since this quantity also 
approaches mft as u/c approaches zero, we take this equation for the definition of 
the relativistic momentum of a particle. 

One interpretation of Equation 39-20 is that the mass of an object increases 
with speed. Then the quantity mrel = m/ VI - (u2/ c2) is called the relativistic 

mass. The relativistic mass of a particle when it is at rest in some reference frame 
is then called its rest mass m. In this chapter, we will treat the terms mass and rest 
mass as synonymous, and both terms will be labeled m. 

Illustration of Conservation of the Relativistic Momentum 

We will compute the y component of the relativistic momentum of each particle 
in the reference frame 5 for the collision of Figure 39-11 and show that the y com­
ponent of the total relativistic momentum is zero. The speed of ball A in 5 is uo' so 
the y component of its relativistic momentum is 

v 
Uo/y B 

y 

5 - - - - - - - - - - - - - - - - - - - - - - - - - - -; 

y': 
, 
, 
, 
, 
, 
, 
, 

A 

(a) 

B 

s'� - - - - - - - - - - - - - - - - - - - - - - - - - - �t' 

(b) 

F I G  U R E 3 9 ·  1 1 (a) Elastic collision of 
two identical balls as seen in frame S. The 
vertical component of the velocity of ball 
B is uo/y in S if it is Uo in S'. (b) The same 
collision as seen in S'. In this frame, ball 
A has a vertical component of velocity 
equal to flo/I" 
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The speed of ball B inS is more complicated .  Its x component is v and its y com­
ponent is - uo/ y. Thus, 

Using this result to compute \11 - (uVc2) , we obtain 

u2 2 u2 U2V2 ( 2)( U2) B V 0 0 v 0 1 - - = 1 - - - - + - = 1 - - 1 - -
c2 c2 c2 c4 c2 c2 

and 

The y component of the relativistic momentum of ball B as seen in 5 is therefore 

Since PBy = -PAy' the y component of the total momentum of the two balls is zero. 
If the speed of each ball is reversed by the collision, the total momentum will 
remain zero and momentum will be conserved. 

39.7 Relativistic Energy 

In classical mechanics, the work done by the net force acting on a particle equals 
the change in the kinetic energy of the particle. In relativistic mechanics, we 
equate the net force to the rate of change of the relativistic momentum. The work 
done by the net force can then be calculated and set equal to the change in kinetic 
energy. 

The creation of elementary particles 
demonstrates the conversion of kinetic 
energy to rest energy. In this 1950 
photograph of a cosmic ray shower, a 
high-energy sulfur nucleus (red) collides 
with a nucleus in a photographic 
emulsion and produces a spray of 
particles, including a fluorine nucleus 
(green), other nuclear fragments (blue), 
and approximately 16 pions (yellow). 
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As in classical mechanics, we will define kinetic energy as the work done by 
the net force in accelerating a particle from rest to some final velocity Ufo Consid­
ering one dimension only, we have 

I 11=11, f"'dP f"' f"' ( ) K = F net ds = dt ds = udp = U d 
V �n 

U 
2 2 11=0 a a a 1 ( U  / e ) 

39-21 

where we have used u = ds/dt. It is left as a problem (Problem 37) for you to show 
that 

( mu ) ( U2)-3/2 
d = m 1 - 2" du 

VI - ( u2/e2) e 

If we substitute this expression into the integrand in Equation 39-21, we obtain 

or 

III, ( 2)-3/2 

a
mI - �2 

U du 

39-22 

RELATIVISTIC K INETIC ENERGY 

(In this expression the final speed uf is arbitrary, so the subscript f is not needed.) 
The expression for kinetic energy consists of two terms. The first term de­

pends on the speed of the particle. The second, me2, is independent of the speed. 
The quantity me2 is called the rest energy Eo of the particle. The rest energy is the 
product of the mass and e2: 

39-23 

REST ENERGY 

The total relativistic energy E is then defined to be the sum of the kinetic en­
ergy and the rest energy: 

39-24 

RELATIVISTIC ENERGY 

Thus, the work done by an unbalanced force increases the energy from the 
rest energy me2 to the final energy me2/VI - ( u2/e2) = mre1e2, where mrel = 
m/V1 - ( u2/e2) is the relativistic mass. We can obtain a useful expression for 
the velocity of a particle by multiplying Equation 39-20 for the relativistic 
momentum by e2 and comparing the result with Equation 39-24 for the rela­
tivistic energy. We have 



or 

u pc 

e E 
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39-25 

Energies in atomic and nuclear physics are usually expressed in units of 
electron volts  (eV) or mega-elect ron volts  (MeV): 

1 eV = 1 .602 X 10-19 J 

A convenient unit for the masses of at omic particles is eV / e2 or MeV / e2, which is 
the rest energy of the part icle divided by e2• The rest energies of some elementary 
particles and light nuclei are given in Table 39-1 . 

TABLE 39-1 
Rest Energies of Some Elementary Particles and Light Nuclei 

Particle Symbol Rest energy, MeV 

Photon 'Y 0 

Electron (positron) ear e- (e+) 0.5110 

Muon f-L"!c 105.7 

P ion wO 135 

w"!c 139.6 

Proton p 938.280 • 
Neutron n 939.573 

Deuteron 2H or d 1875.628 

Triton 3H or  t 2808.944 

Helium-3 3He 2808.41 

Alpha particle 4He or  a 3727.409 

TOTAL ENERGY, KINETIC ENERGY, AND MOMENTUM EXAMPLE 39 · 11 

An electron (rest energy 0.511 MeV) moves with speed u = O.Be. Find (a) its 
total energy, (b) its kinetic energy, and (e) the magnitude of its momentum. 

(a) The total energy is given by E quat ion 39-24: 

(b) The kinet ic energy is the t otal energy minus the 
rest energy: 

(c) The magnitude of the moment um is found from 
Equat ion 39-20. We can simplify by mult iplying 
both numerator and denominator by e2 and using 
the Part (a) result : 

E 
me2 0.511 MeV 0.511 MeV 

I I = = = = 0.852 MeV 
VI - (u2/e2) VI - 0.64 0.6 

K = E - me2 = 0.852 MeV -0.511 MeV = 'I 0-
.

-
3

-
41

-
M
-

eV
---'1 

mu 
p = -----r=== VI - (u2/e2) 

me2 u 0.8e I I = 
� / ? = (0.852 MeV)-2 = 0.681 MeV/c 
v l - (u2/e2)e- e · . 

R E M  A RK S The technique used to  solve Part (c) (multiplying numerator and 
• denominator by e2) is equivalent to  using Equat ion 39-25. 
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The expression for k inetic energy given by Equation 39-22 does not look much 
like the classical expression �mu2. However, when u is much less than e, we can 
approximate  1/\11 - (u2/e2) using the binomial expansion 

x2 
(1 + x) " = 1 + nx + n (n - 1 ) - + . . . = 1 + nx 

2 

Then 

1 (U2)-1/2 1 u2 --;:==== =  1-- = 1 + --
\11 - (u2/e2) e2 2 e2 

39-26 

From this  result ,  when u i s  much less than e, the expression for relativi stic kinetic 
energy becomes 

K = me2 - 1 = me2 1 + - - - 1 = -mu2 
[ 

1 ] ( 1 u2 ) 1 VI - (u2/e2) 2 e2 2 

Thus, at low speeds, the relativistic  expression is  the same as the classical 
expressi on. 

We not e from E quation 39-24 that as the speed u approaches the speed of 

light e, the energy of the particle becomes very large because I/Vl - (u2/e2) 
becomes very large. At u = e, the energy becomes infinite. For u greater than e, VI - (u2/e2) i s  the square root of a negative number and is  therefore imaginary. 
A simple interpretation of the result that it takes an infinite amount of energy to  
accelerate a particle to  t he speed of  light i s  that no particle that i s  ever at rest in 
any inertial reference frame can t ravel as fast or faster than the speed of light e. 
As we noted in  E xample 39-8, i f  the speed of a particle i s  less than e in one refer­
ence frame, it i s  less than e in  all other reference frames moving relative to  that 
frame at speeds less than e. 

In practical applications, the momentum or energy of a particle is often known 
rather than the speed. E quation 39-20 for the relativistic momentum and E qua­
tion 39-24 for the relativistic energy can be combined to eliminat e the speed u. 
The result i s  

39-27 

RELATION FOR TOTAL ENERGY, MOMENTUM, AND REST ENERGY 

This useful equation can be convenient ly remembered from the right t riangle 
shown in Figure 39-12. If the energy of a particle is much greater than its rest 
energy me2, the second term on the right side of E quation 39-27 can be neglected, 
giving the useful approxi mation 

E = pc, for E » me2 39-28 

Equation 39-28 is an exact relation between energy and momentum for particles 
with no mass, such as photons. 

E X  E R e I S E A proton (mass 938 MeV / e2) has a total energy of 1400 Me V. Find 
(a) 1/Vl - (u2/e2), (b) the momentum of the proton, and (c) the speed u of the 
prot on. (Answer (a) 1 .49, (b) P = 1.04 X 103 MeV /e, and (c) u = 0.74e) 
Mass and Energy 

Einstein considered Equati on 39-23 relating the energy of a particle t o  it s mass t o  
be the most significant result o f  the theory o f  relativity. Energy and inertia, which 

E2 = (pc)2 + (111c2)2 

/==J pc 

me2 

F I G  U R E 3 9 · 1 2 Right triangle to 
remember Equation 39-27. 
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were formerly two dist inct concepts, are related through this famous equat ion. 
As discussed in Chapter 7, the conversion of rest energy to kinet ic energy with a 
corresponding decrease in mass is a common occurrence in radioact ive decay 
and nuclear react ions, including nuclear fission and nuclear fusion. We illus­
trated this in Sect ion 7-3 with the deuteron, whose mass is 2.22 MeV Ic2 less than 
the mass of it s part s, a prot on and a neutron. When a neutron and a proton com­
bine to form a deuteron, 2.22 MeV of energy is released. The breaking up of a 
deuteron into a neutron and a proton requires 2.22 MeV of energy input . The pro­
ton and the neutron are thus bound together in a deuteron by a binding energy of 
2.22 MeV. Any st able composite  particle, such as a deuteron or a helium nucleus 
(2 neut rons plus 2 prot ons), that is made up of other particles has a mass and rest 
energy that are less than the sum of the masses and rest energies of it s parts .  The 
difference in rest energy is the binding energy of the composite  part icle. The 
binding energies of atoms and molecules are of the order of a few electron volts, 
which leads to a negligible difference in mass between the composite  part icle and 
its parts. The binding energies of nuclei are of the order of several MeV, which 
leads to a noticeable difference in mass. Some very heavy nuclei, such as radium, 
are radioactive and decay into a lighter nucleus plus an alpha part icle. In this 
case, the original nucleus has a rest energy greater than that of the decay parti­
cles. The excess energy appears as the kinet ic energy of the decay products .  

To further illustrate the interrelation of mass and energy, 
we consider a perfect ly inelast ic collision of two part icles. 
Classically, kinet ic energy is lost in such a collision. Rela­
t ivist ically, this loss in kinetic energy shows up as an in­
crease in rest energy of the system; that is, the total energy 
of the system is conserved. Consider a part icle of mass 1n1 
moving with init ial speed u1 that collides with a part icle of 
mass 1112 moving with init ial speed u2. The part icles collide 
and st ick together, forming a particle of mass M that moves 
with speed uf, as shown in Figure 39-13. The init ial total en-
ergy of particle 1 is 

O 111 
I-----I.� 

(a) 

where K1 is it s init ial kinet ic energy. Similarly the init ial total energy of particle 2 is 

The total init ial energy of the system is 

where Kj = K1 + K2 and Mj = 1n1 + 1n2 are the initial kinet ic energy and init ial 
mass of the system. The final total energy of the system i s  

I f  we set the final tot al energy equal t o  the initial total energy, we obtain 

Rearranging gives Kf - Kj = - (Mf - M;)c2, which can be expressed 

ilK + ( ilM)c2 = 0 39-29 

where ilM = Mf - Mj is the change in mass of the system. 

1112 M 
(b) 

F I G  U R E 3 9 · 1  3 A perfectly inelastic 
collision between two particles. One 
particle of mass 1111 collides with another 
particle of mass 1112, After the collision, 
the particles stick together, forming 
a composite particle of mass M that 
moves with speed IIf so that relativistic 
momentum is conserved. Kinetic energy 
is lost in this process. If we assume that 
the total energy is conserved, the loss in 
kinetic energy must equal c2 times the 
increase in the mass of the system. 
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TOTALLY INELASTIC COLLISION EXAMPLE 39 · 1 2 

A particle of mass 2 MeV/c2 and kinetic energy 3 MeV collides with a sta­
tionary particle of mass 4 MeV/c2• After the collision, the two particles stick 
together. Find (a) the initial momentum of the system, (b) the final velocity of 
the two-particle system, and (c) the mass of the two-particle system. 

P I C  T U R E T H E P R O  B L E M (a) The init ial momentum of the system is the init ial 
momentum of the incoming particle, which can be found from the total energy of 
the part icle. (b) The final velocity of the system can be found from its t ot al energy 
and momentum using ujc = pc/E (Equat ion 39-25) .  The energy is found from 
conservat ion of energy, and the momentum from conservat ion of moment um. 
(c) Since the final energy and momentum are known, the final mass can be found 
from E2 = p2e2 + (MC2)2. 

(a) 1. The init ial momentum of t he system is the init ial 
momentum of the incoming part icle. The mo­
ment um of a part icle is related to it s energy and 
mass (Equat ion 39-27): 

2. The total energy of the moving part icle is the 
sum of it s kinet ic energy and its rest energy: 

3. Use this t ot al energy to calculat e  the momentum: 

(b) 1. We can find t he final velocity  of the syst em from 
its tot al energy Ef and its momentum Pf using 
Equat ion 39-25: 

2. By the conservat ion of t ot al energy, the final en­
ergy of the syst em equals the init ial tot al energy 
of the two part icles: 

3. By the conservat ion of momentum, the final mo­
mentum of t he two-part icle system equals the 
init ial momentum: 

4. Calculate  the velocity  of the two-part icle syst em 
from it s t ot al energy and moment um using 
ujc = pc/E: 

(c) We can find t he mass Mf of t he final t wo-part icle 
system from Equat ion 39-27 using pc = 4.58 MeV 
and E = 9 MeV: 

Ei = pie2 + (ml e2)2 

PIC = \lEi - (mIc2)2 

EI = 3 MeV + 2 MeV = 5 MeV 

PIC = \lEi - (m1e2)2 = \1(5 MeV)2 - (2 MeV)2 = \121 MeV 

PI = 1 4.58 MeV/c 1 

Ef = Ej = EI + E2 = 5 MeV + 4 Me V = 9 Me V 

Pf = 4.58 MeV /c 

Uf PfC 4.58 MeV = 0.509 c Ef 9 MeV 

uf = 1 0.50ge 1 
E� = (pfc)2 + (Mfc2)2 

(9 MeV)2 = (4.58 MeV)2 + (MrC2)2 

Mf = 1 7.75 MeV /c2 1 

R E M A R K S  Note that the mass of the system increased from 6 MeV /e2 t o  
7.75 MeV /e2. This increase t imes c2 equals the loss in kinet ic energy o f  the 
system, as you will show in the following exercise. 

E X  E R e  I S E (a) Find the final kinetic energy of the two-part icle system in 
Example 39-12. (b) Find the loss in kinet ic energy, Kloss' in the collision. (c) Show 
that Kloss = (L'lM)e2, where L'lM is the change in mass of the system. [Answer 
(a) Kf = Ef - Mfe2 = 9 MeV - 7.75 MeV = 1 .25 MeV, (b) Kloss = Kj - Kf = 3 MeV -
1 .25 MeV = 1 .75 MeV, and (c) (L'lM)e2 = (Mf - MJe2 = 7.75 MeV - (2 MeV + 

• 4 MeV) = 1.75 MeV = Kloss] 
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MOMENTUM AND TOTAL-ENERGY CONSERVATION EXAMPLE 39 · 1 3 

A 1 x 106-kg rocket has 1 x 103 kg of fuel on board. The rocket is parked in 
space when it suddenly becomes necessary to accelerate. The rocket engines 
ignite, and the 1 x 103 kg of fuel are consumed. The exhaust (spent fuel) is 
ejected during a very short time interval at a speed of c/2 relative to S-the in­
ertial reference frame in which the rocket is initially at rest. (a) Calculate the 
change in the mass of the rocket-fuel system. (b) Calculate the final speed of 
the rocket uR relative to S. (c) Again, calculate the final speed of the rocket rela­

tive to S, this time using classical (newtonian) mechanics. 

P I C  T U R E T H E P R O  B L E M The speed of the rocket and the change in the mass 
of the system can be calculated via conservat ion of momentum and conservat ion 
of energy. In reference frame S, the t otal momentum of the rocket plus fuel is 
zero. After the burn, the magnitude of the momentum of the rocket equals that of 
the ejected fuel. Let 1nR = 1 X 106 kg be the mass of the rocket , not including the 
mass of the fuel, let 1nF,i = 1 X 103 kg be the mass of the fuel before the burn, and 
let 1nF,f be the mass of the fuel after the burn. The mass of the rocket ,  1nR, remains 
fixed, but during t he burn the mass of the fuel decreases. (The fuel has less chem­
ical energy after the burn, and so has less mass as well.) 

(a) 1. The magnitudes of the momentum of the rocket and 
the momentum of the ejected fuel are equal. For the 
reasons stated above, the mass of the rocket ,  not in­
cluding the 1 X 103 kg of fuel, does not change dur­
ing the burn: 

2. The total energy of the system does not change: 

3. The init ial energy is the rest energy of the rocket and 
fuel before the burn. The final energy is the energy of 
the rocket plus energy of the fuel. The energy of each 
is related to it s momentum by Equat ion 39-27: 

4. Equate  the init ial and final energies: 

5. The step 4 result and the step 1 result ,  

1nF fUF p = ' , const itute two simultaneous equa-
v'1 - ( uf./c2) 

tions with unknowns p and 1nF,f ' Solving for 111F,f gives: 

(b) l .  To solve for uR, we use E quat ion 39-25: 

2. To solve for p, we subst itute the value for 111F,f into the 
Part (a), step 1 result : 

111RUR 1nF,fUF 
--,======= = = P 
VI - ( uVc2) VI - (U�/C2) 

where 

p = PR = PF' 111R = 1 X 106 kg, uF = O .5c, and uR is the 
final speed of the rocket . 

Ef =  Ei 
E. = 111RC2 + 1nF .c2 = ( 11 1R + 1nF . )c2 I ,I , I  

so 

Ef = ER,f + EF,f 

Ef = Vp2C2 + ( 1nRC2)2 + Vp2C2 + ( 111 F, fC2)2 

Vp2C2 + ( 111 C2)2 + Vp2C2 + ( 111 C2)2 = ( 11 1  + 111 .)c2 R F,f R F,I 
1n F,f = 866 kg 

so 

1n lass = 111 F, i - 111 F,f = 1000 kg - 866 kg = 1 134 kg 1 
UR pc 
C ER,f 

1n F fUF p =  ' 
VI - ( uVc2) 

(8�C 
= (5.00 X 102 kg)c 

1 - � 
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3. We use the value for p t o  solve for 
ER,f : 

E�,f = p2e2 + (mRe2) 2 = (5.00 X 102 kg)2e4 + ( 106 kg)2e4 = ( 1.00 X 1012 kg2)e4 
so 

ER,f = (1.00 X 106 kg)e2 

4. Using our Part (b), step 1 result ,  
we solve for uR: 

U = 
pe2 

_ (5.00 X 102 kg)e3 
R ER, f  - (1.00 X 106 kg)e2 

= 1 5.00 X 1O -4e = 1 .50 X 105 mls I 

mRuR = mFuF (e) Equate  the magnit ude of t he classi­
cal expressions for the momentum 
of the rocket and burned fuel and 
solve for uR: 

mF 103 kg r------, 
uR = 

mR up = 106 kg O .5e = 1 1 .5 X 105 ml s I 

R E M  A R K  If carried out to  five figures, the relat ivist ic calculat ion gives uR = 

4.9994 X 104 e for the final speed of the rocket . However, the classical calculat ion 
gives uR = 5.0000 X 104 e. These two values differ by less than one part in 8000. 

�llrIRl lt§ E X  E R e I S E If the matter being ejected were a 1 X 103-kg rigid block 
��§ launched by a spring with one end att ached to  the rocket ,  would the 

rest mass of the block change or would the rest mass of the spring 
change? (Answer Only the rest mass of the spring would change.) 

39.8 General Rel ativity 

The generalizat ion of the theory of relat ivity  to  noninert ial reference frames by 
E instein in 1916 is known as the general theory of relat ivity. It is much more diffi­
cult mathematically than the special theory of relat ivity, and there are fewer 
situat ions in which it can be tested. Nevertheless, it s importance calls for a brief 
qualitat ive discussion. 

The basis of the general theory of relat ivity is the principle of equivalence: 

A homogeneous gravit at ional field is completely equivalent to a uniformly 
accelerated reference frame. 

PRINCIPLE OF EQUIVALENCE 

This principle arises in Newtonian mechanics because of the apparent ident ity of 
gravitat ional mass and inert ial mass. In a uniform gravitat ional field, all objects 
fall with the same accelerat ion g independent of their mass because the gravita­
t ional force is proportional t o  the (gravit at ional) mass, whereas the accelerat ion 
varies inversely with the (inert ial) mass. Consider a compartment in space un­
dergoing a uniform accelerat ion 71, as shown in Figure 39-14a. No mechanics ex­
periment can be performed inside the compartment that will dist inguish whether 
the compartment is actually accelerat ing in space or is at rest (or is moving with 
uniform velocity) in  the presence of a uniform gravitat ional field g = -71, as 
sh own in Figure 39-14b. If object s are dropped in the compartment , they will fall 
to the floor with an accelerat ion g = -71. If people stand on a spring scale, it will 
read their weight of magnitude mao 

Einstein assumed that t he principle of equivalence applies to  all physics and 
not just t o  mechanics. In effect ,  he assumed that there is no experiment of any 
kind that can distinguish uniformly accelerated mot ion from the presence of a 
gravitat ional field. 

One consequence of the principle of equivalence-the deflection of a light beam 
in a gravitational field-was one of the first to be tested experimentally. In a region 

(a) 
a 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
(b) 

F I G  U R E 3 9 • 1 4 The results of 
experiments in a uniformly accelerated 
reference frame (a) cannot be 
distinguished from those in a 
uniform gravitational field (b) if 
the acceleration Ii and the gravitational 
field g have the same magnitude. 
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with no gravitational field, a light beam will t ravel in a straight line at speed c. The 
principle of equivalence tells us that a region with no gravitational field exists only 
in a compartment that is in free fall. Figure 39-15 shows a beam of light entering a 
compartment that is accelerating relative to a nearby reference frame in free fall. 
Successive posit ions of the compartment at equal time intervals are shown in Figure 
39-15a. Because the compartment is accelerating, the distance it moves in each t ime 
interval increases with t ime. The path of the beam of light as observed from inside 
the compartment is therefore a parabola, as shown in Figure 39-15b. But according 
to the principle of equivalence, there is no way to distinguish between an accelerat ­
ing compartment and one moving with uniform velocity in a uniform gravitational 
field. We conclude, therefore, that a beam of light will accelerate in a gravitational 
field, just like objects that have mass. For example, near the surface of the earth, 
light will fall with an accelerat ion of 9.81 m/ S2. This is difficult to observe because of 
the enormous speed of light . In a distance of 3000 km, which takes light about 0.01 s 
to traverse, a beam of light should fall approximately 0.5 mm. Einstein pointed out 
that the deflect ion of a light beam in a gravitational field might be observed when 
light from a distant star passes close to  the sun, as illust rated in Figure 39-16. Be­
cause of the brightness of the sun, this cannot ordinarily be seen. Such a deflection 
was first observed in 1919 during an eclipse of the sun. This well-publicized obser­
vat ion brought instant worldwide fame to Einstein. 

A second prediction from Einstein's theory of general relativity, which we will 
not discuss in detail, is the excess precession of the perihelion of the orbit of 
Mercury of about 0.010 per century. This effect had been known and unexplained 
for some t ime, so, in a sense, explaining it const ituted an immediate success of the 
theory. 

A third predict ion of general relat ivity concerns the change in t ime intervals 
and frequencies of light in a gravit at ional field. In Chapter 11, we found that the 
gravitat ional potent ial energy between two masses M and m a distance r apart is 

GMm U = --­
r 

where G is the universal gravit at ional constant, and the point of zero potent ial 
energy has been chosen to be when the separat ion of the masses is infinite. The 
potent ial energy per unit mass near a mass M is called the gravitational potential ¢: 

¢ = GM 
r 

n 

_ _  �!��1� _ _  ! _ _ _ _  .. _ _ _ _  _ 
beam 1-
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39-30 

, 

The quartz sphere in the top part of the 
container is probably the world's most 
perfectly round object. It is designed to 
spin as a gyroscope in a satellite orbiting 
the earth. General relativity predicts 
that the rotation of the earth will cause 
the axis of rotation of the gyroscope 
to precess in a circle at a rate of 
approximately 1 revolution in 
100,000 years. 

, 1 /  
Apparent 

position of star 
, 1 / 
/ 1 '  

: Apparent 
: light path 

. . 

. . 

e .. · : : 
� '\ : : 
, , : 

'----_ ....... - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

(a) 

F IGURE 39- 1 5  (a) A light beam moving in a straight line through a compartment that is 
undergoing uniform acceleration relative to a nearby reference frame in free fall. The 
position of the beam is shown at equally spaced times tv t2, t3, and t4• (b) In the reference 
frame of the compartment, the light travels in a parabolic path as a ball would if it were 
projected horizontally. The vertical displacements are greatly exaggerated in Figure 39-1Sa 
and Figure 39-1Sb for emphasis. 

' '
. I 

: ' .. " , , , , , , , 

(b) ' .  - - -

Sun 

Earth 

F I G  U R E 3 9 - 1 6 The deflection 
(greatly exaggerated) of a beam 
of light due to the gravitational 
attraction of the sun. 
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According to the general theory of relativity, clocks run more slowly in regions 
of lower gravit at ional pot ent ial. (Since t he gravit at ional potent ial is negat ive, as 
can be seen from E quat ion 39-30, the nearer the mass the more negat ive, and 
therefore the lower the gravit at ional potent ial.) If .:lt1 is a t ime interval bet ween 
two event s  measured by a clock where the gravit at ional potent ial is 4>1 and .:lt2 is 
the interval bet ween the same event s  as measured by a clock where the gravit a­
t ional potent ial is 4>2' general relat ivity  predict s  that the fract ional difference be­
tween t hese t imes will be approximatelyt 

39-31 

A clock in a region of low gravit at ional potent ial will therefore run slower 
than a clock in a region of high potent ial. Since a vibrating atom can be consid­
ered to be a clock, t he frequency of vibrat ion of an atom in a region of low poten­
t ial, such as near t he sun, will be lower t han the frequency of vibrat ion of t he 
same at om on the earth. This shift t oward a lower frequency, and therefore a 
longer wavelengt h, is called the gravitational redshift. 

As our final example of the predict ions of general relat ivity, we ment ion b lack 
holes, which were first predict ed by J. Robert Oppenheimer and Hart land Sny­
der in 1939. According t o  t he general theory of relat ivity, if the density of an ob­
ject such as a star is great enough, it s gravit at ional attract ion will be so great that 
once inside a crit ical radius, nothing can escape, not even light or other electro­
magnet ic radiat ion. (The effect of a black hole on objects outside the crit ical ra­
dius is the same as that of any other mass.) A remarkable property of such an 
object is t hat nothing t hat happens inside it can be communicated to the outside. 
As sometimes occurs in physics, a simple but incorrect calculation gives the cor­
rect results  for the relat ion bet ween the mass and the crit ical radius of a black 
hole. In Newtonian mechanics, the speed needed for a part icle to escape from the 
surface of a planet or a star of mass M and radius R is given by Equat ion 11-21 :  

v 
= 
�2GM 

e R 

If we set the escape speed equal t o  the speed of light and solve for the radius, we 
obtain the crit ical radius Rs' called the Schwarzschild radius: 

39-32 

For an object with a mass equal to five t imes that of our sun (theoret ically the 
minimum mass for a black hole) to  be a black hole, it s radius would have to  be 
approximately 15 km. Since no radiat ion is emitted from a black hole and its ra­
dius is expected to  be small, t he detect ion of a black hole is not easy. The best 
chance of detection occurs if a black hole is a close companion t o  a normal star in 
a binary st ar system. Then bot h  stars revolve around their center of mass and the 
gravit at ional field of the black hole will pull gas from the normal star into the 
black hole. However, t o  conserve angular momentum, the gas does not go 
straight int o  t he black hole. Inst ead, the gas orbit s  around the black hole in a disk, 
called an accret ion disk, while slowly being pulled closer to the black hole. The 
gas in this disk emit s  X rays because the temperature of the gas being pulled in­
ward reaches several millions of kelvins. The mass of a black-hole candidate  can 
oft en be est imat ed. An est imated mass of at least five solar masses, along wit h  
the emission o f  X rays, est ablishes a strong inference that the candidate  is, in fact , 
a black hole. In addit ion t o  t he black holes just described, there are supermassive 
black holes t hat exist at the centers of galaxies. At the center of the Milky Way is a 
supermassive black hole with a mass of about two million solar masses. 

This extremely accurate hydrogen maser 
clock was launched in a satellite in 1976, 
and its time was compared to that of an 
identical clock on the earth. In accordance 
with the prediction of general relativity, 
the clock on the earth, where the 
gravitational potential was lower, lost 
approximately 4.3 x 10-10 s each second 
compared with the clock orbiting the 
earth at an altitude of approximately 
10,000 km. 

t Since this shift is usually very small, it does not 
matter by which interval we divide on the left side 
of the equation. 
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S U M M A R Y 
--------------------------------------------------- ===� 

Topic 

1. Einstein's Postulates 

2. The Lorentz Transformation 

Inverse transformation 

3. Time Dilation 

4. Length Contraction 

5. The Relativistic Doppler Effect 

6. Clock Synchronization 
and Simultaneity 

7. The Velocity Transformation 

Relevant Equations and Remarks 

The special theory of relativity is based on two postulates of Albert Einstein. All of the 
results of special relativity can be derived from these postulates. 

Postulate 1: Absolute uniform motion cannot be detected. 
Postulate 2: The speed of light is independent of the motion of the source. 

An important implication of these postulates is 
Postulate 2 (alternate): Every observer measures the same value c for the speed 
of light. 

x = y (x' + vt ' ), 

t = y (t '  + v�:') 

x' = y(x - v t), 
, ( vx) t =y t - � 

y = y', z = z ' 

y' = y, z ' = z 

39-9 

39-10 

39-7 

39-11 

39-12 

The time interval measured between two events that occur at the same point in space 
in some reference frame is called the proper time tp ' In another reference frame in 
which the events occur at different places, the time interval between the events is 
longer by the factor y. 

39-13 

The length of an object measured in the reference frame in which the object is at rest is 
called its proper length Lp. When measured in another reference frame, the length of 
the object is 

L L=� y 
Y1 - (v2/c2) 

f' = 1 - (vi c) fa , 

Y1 - (v2/c2) 
f' = 1 + (vi c) fa , 

39-14 

approaching 39-16a 

receding 39-16b 

Two events that are simultaneous in one reference frame typically are not simultane­
ous in another frame that is moving relative to the first. If two clocks are synchro­
nized in the frame in which they are at rest, they will be out of synchronization in 
another frame. In the frame in which they are moving, the chasing clock leads by 
an amount 

39-17 

where Lp is the proper distance between the clocks. 

u '  + v 
u = _---"x ___ _ 
x 1 + ( vu; lc2) 39-18a 
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Inverse velocity transformation 

U '  
Lt = -----:-_----:-'-Y --:-�-:-

Y y [ l + (vu; /e2) ] 

u: 
u = ----,-----:--::-

Z y [ l + (vu; /e2) ] 

u - v 
u '  = x 

x 1 - (vu/e2) 

--> 

8. Relativistic Momentum 
-> mu 
p = 

VI - (u2/e2) 

where m is the mass of the particle. 

9. Relativistic Energy 

Kinetic energy 

Rest energy 

Total energy 

10. Useful Formulas for Speed, 
Energy, and Momentum 

u pe 
e E 

i 

E2 = p2e2 + (me2)2 

E = pe, for E »  me2 

• Single-concept, single-step, relatively easy 

• •  Intermediate-level, may require synthesis of concepts 

• • •  Challenging 

IssMI Solution is in the Student Solutions Manual 

Problems available on iSOLVE online homework service 

./ These "Checkpoint" online homework service problems ask students 
additional questions about their confidence level, and how they arrived 
a t their answer. 

P R O B L E M S  

39-l8b 

39-l8e 

39-l9a 

39-l9b 

39-lge 

39-20 

39-22 

39-23 

39-24 

39-25 

39-27 

39-28 

In a few problems, you are given more 

data than you actually need; in a few 

other problems, you are required to 

supply data from your general 

knowledge, outside sources, or 

informed estimates . 

Conceptual Problems 

1 • IssMI The approximate total energy of a particle of 
mass m moving at speed u « e is (a) me2 + �mu2 (b) �mu2. 
(e) emu. (d ) me2. (e) kmu. 

basement. Considering general relativity, which twin will age 
more quickly? (a) They will age at the same rate. (b) The twin 
who works on the top floor will age more quickly. (e) The twin 
who works in the basement will age more quickly. (d) It 
depends on the speed of the office building. (e) None of these 
is correct. 

2 • IssMI A set of twins work in an office building. One 
twin works on the top floor and the other twin works in the 

3 • True or false: 

(a) The speed of light is the same in all reference frames. 



(b) Proper time is the shortest time interval between two 
events. 

(c) Absolute motion can be determined by means of length 
contraction. 

(d) The light-year is a unit of distance. 
(e) Simultaneous events must occur at the same place. 
(j) If two events are not simultaneous in one frame, they 

cannot be simultaneous in any other frame. 
(g) If two particles are tightly bound together by strong at­

tractive forces, the mass of the system is less than the sum 
of the masses of the individual particles when separated. 

4 • An observer sees a system consisting of a mass os­
cillating on the end of a spring moving past at a speed u and 
notes that the period of the system is T. Another observer, 
who is moving with the mass-spring system, also measures 
its period. The second observer will find a period that is 
(a) equal to T. (b) less than T. (c) greater than T. (d) either (a) or 
(b) depending on whether the system was approaching or 
receding from the first observer. (e) There is not sufficient 
information to answer the question. 

s • The Lorentz transformation for y and z is the same 
as the classical result: y = y' and z = z ' . Yet the relativistic ve­
locity transformation does not give the classical result uy = u� 
and Uz = u; . Explain. 

Estimation and Approximation 

6 • •  The sun radiates energy at the rate of approxi­
mately 4 X 1026 W. Assume that this energy is produced by 
a reaction whose net result is the fusion of 4 H nuclei to form 
1 He nucleus, with the release of 25 MeV for each He nucleus 
formed. Calculate the sun's loss of mass per day. 

7 • •  IssMI The most distant galaxies that can be seen by 
the Hubble telescope are moving away from us with a red­
shift parameter of about z = 5. (See Problem 30 for a defini­
tion of z.) (a) What is the velocity of these galaxies relative to 
us (expressed as a fraction of the speed of light)? (b) Hubble's 
law states that the recession velocity is given by the expres­
sion v = Hx, where v is the velocity of recession, x is the 
distance, and H is the Hubble constant, H = 75 km/s/Mpc. 
(1 pc = 3.26 c·y.) Estimate the distance of such a galaxy using 
the information given. 

Time Dilation and Length Contraction 

8 • The proper mean lifetime of a muon is 2 fLS. Muons 
in a beam are traveling through a laboratory at 0.95c. (a) What 
is their mean lifetime as measured in the laboratory? (b) How 
far do they travel, on average, before they decay? 

9 • •  In the Stanford linear collider, small bundles of 
electrons and positrons are fired at each other. In the labora­
tory's frame of reference, each bundle is approximately 
1 cm long and 10 fLm in diameter. In the collision region, 
each particle has an energy of 50 Ge V, and the electrons and 
the positrons are moving in opposite directions. (a) How 
long and how wide is each bundle in its own reference 
frame? (b) What must be the minimum proper length of the 
accelerator for a bundle to have both its ends simultane­
ously in the accelerator in its own reference frame? (The ac-

Problems 1 30 1  

tual length o f  the accelerator i s  less than 1000 m . )  (c) What is 
the length of a positron bundle in the reference frame of the 
electron bundle? 

10 • •  IssMI Unobtainium (Un) is an unstable particle that 
decays into normalium (Nr) and standardium (St) particles. 
(a) An accelerator produces a beam of Un that travels to a de­
tector located 100 m away from the accelerator. The particles 
travel with a velocity of v = 0.866c. How long do the particles 
take (in the laboratory frame) to get to the detector? (b) By the 
time the particles get to the detector, half of the particles have 
decayed. What is the half-life of Un? (Note: Half-life as it 
would be measured in a frame moving with the particles. )  (c) 
A new detector is going to be used, which is located 1000 m 
away from the accelerator. How fast should the particles be 
moving if half of the particles are to make it to the new 
detector? 

1 1  • •  Star A and Star B are at rest relative to the earth. 
Star A is 27 c'y from earth, and Star B is located beyond (be­
hind) Star A as viewed from earth. (a) A spaceship is making a 
trip from earth to Star A at a speed such that the trip from 
earth to Star A takes 12 y according to clocks on the spaceship. 
At what speed, relative to earth, must the ship travel? (As­
sume that the times for acceleration are very short compared 
to the overall trip time.) (b) Upon reaching Star A, the ship 
speeds up and departs for Star B at a speed such that the 
gamma factor, y, is twice that of Part (a) .  The trip from Star A 
to Star B takes 5 y (ship's time) .  How far, in c'y, is Star B from 
Star A in the rest frame of the earth and the two stars? 
(c) Upon reaching Star B, the ship departs for earth at the 
same speed as in Part (b). It takes it 10 Y (ship's time) to return 
to earth. If you were born on earth the day the ship left earth 
(and you remain on earth), how old are you on the day the 
ship returns to earth? 

1 2  • A spaceship travels to a star 35 c'y away at a speed 
of 2.7 x 108 m/s. How long does the spaceship take to get to 
the star (a) as measured on the earth and (b) as measured by a 
passenger on the spaceship? 

13 • Use the binomial expansion equation 

n(n  - 1 )  
(1 + x)" = 1 + n x  + 

2 
x2 + . . .  = 1 + nx, for x « 1 

to derive the following results for the case when v is much 
less than c. 

1 v2 (a) y = l + - -
2 c2  

1 1 v2 (b) -:y = 1 - 2� 
1 1 v2 

(c) Y - 1 = 1 - - = - ­y 2 c2  

1 4  • •  A clock on Spaceship A measures the time interval 
between two events, both of which occur at the location of the 
clock. You are on Spaceship B. According to your careful mea­
surements, the time interval between the two events is 1 per­
cent longer than that measured by the two clocks on Space­
ship A. How fast is Ship A moving relative to Ship B. (Use one 
or more of the results of Problem 13.) 

15 • •  If a plane flies at a speed of 2000 km/h, how long 
must the plane fly before its clock loses 1 s because of time 
dilation? (Use one or more of the results of Problem 13.) 
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The Lorentz Transformation, 
Clock Synchronization, and Simultaneity 

1 6  • •  Show that when v « c the transformation equa-
tions for x, t, and u reduce to the Galilean equations. 

1 7  . .  ISSMI iII r A spaceship of proper length Lp = 
400 m moves past a transmitting station at a speed of 0.76c. At 
the instant that the nose of the spaceship passes the transmit­
ter, clocks at the transmitter and in the nose of the spaceship 
are synchronized to t = t' = o. The instant that the tail of the 
spaceship passes the transmitter a signal is sent and subse­
quently detected by the receiver in the nose of the spaceship. 
(a) When, according to the clock in the spaceship, is the signal 
sent? (b) When, according to the clock at the transmitter, is 
the signal received by the spaceship? (c) When, according to 
the clock in the spaceship, is the signal received? (d) Where, 
according to an observer at the transmitter, is the nose of the 
spaceship when the signal is received? 

1 8  • •  In frame 5, event B occurs 2 JLS after event A, which 
occurs at x = 1 .5 km from event A. How fast must an observer 
be moving along the +X axis so that events A and B occur 
simultaneously? Is it possible for event B to precede event A 
for some observer? 

1 9  • •  Observers in reference frame 5 see an explosion 
located at Xl = 480 m. A second explosion occurs 5 JLS later at 
x2 = 1200 m. In reference frame 5 ' ,  which is moving along the 
+ x axis at speed v, the explosions occur at the same point in 
space. What is the separation in time between the two explo­
sions as measured in 5 '? 

20 • • •  Two events in 5 are separated by a distance D = 

x2 - Xl and a time T = t2 - tl. (a) Use the Lorentz transforma­
tion to show that in frame 5 ' ,  which is moving with speed v 
relative to 5, the time separation is t� - t{ = y(T - vDlc2). 
(b) Show that the events can be simultaneous in frame 5 '  only 
if D is greater than cT. (c) If one of the events is the cause of the 
other, the separation D must be less than cT, since Dic is the 
smallest time that a signal can take to travel from Xl to x2 in 
frame 5. Show that if D is less than cT, t� is greater than t{ in 
all reference frames. This shows that if the cause precedes the 
effect in one frame, it must precede it in all reference frames. 
(d) Suppose that a Signal could be sent with speed c' > c so 
that in frame 5 the cause precedes the effect by the time T = 
Dic' .  Show that there is then a reference frame moving with 
speed v less than c in which the effect precedes the cause. 

21 • • •  A rocket with a proper length of 700 m is moving to 
the right at a speed of 0.9c. It has two clocks, one in the nose and 
one in the tail, that have been synchronized in the frame of the 
rocket. A clock on the ground and the nose clock on the rocket 
both read t = 0 as they pass. (a) At t = 0, what does 
the tail clock on the rocket read as seen by an observer on the 
ground? When the tail clock on the rocket passes the ground 
clock, (b) what does the tail clock read as seen by an observer on 
the ground, (c) what does the nose clock read as seen by an ob­
server on the ground, and (d) what does the nose clock read as 
seen by an observer on the rocket? (e) At t = 1 h, as measured on 
the rocket, a light signal is sent from the nose of the rocket to an 
observer standing by the ground clock. What does the ground 
clock read when the observer receives this signal? (J) When the 
observer on the ground receives the signal, he sends a return 

signal to the nose of the rocket. When is this signal received at 
the nose of the rocket as seen on the rocket? 

22 • • •  ISSMI An observer in frame 5 standing at the origin 
observes two flashes of colored light separated spatially by 
�x = 2400 m. A blue flash occurs first, followed by a red flash 
5 JLS later. An observer in 5 '  moving along the x axis at speed 
v relative to 5 also observes the flashes 5 JLS apart and with a 
separation of 2400 m, but the red flash is observed first. Find 
the magnitude and direction of v. 

The Velocity Transformation 

23 • •  Show that if u; and v in Equation 39-18a are both 
positive and less than c, then Ux is positive and less than c. 
[Hint: Let u� = (1 - 81k and v = (1 - 82)C, where 81 and 82 are 
positive numbers that are less than 1 . ]  
24 • •  155M I A spaceship, at rest in a certain reference frame 

5, is given a speed increment of 0.50c (call this boost 1) .  Relative 
to its new rest frame, the spaceship is given a further 0.50c incre­
ment 10 seconds later (as measured in its new rest frame; call 
this boost 2). This process is continued indefinitely, at 10-s inter­
vals, as measured in the rest frame of the ship. (Assume that the 
boost itself takes a very short time compared to 10 s.) (a) Using a 
spreadsheet program, calculate and graph the velocity of the 

spaceship in reference frame 5 as a function of the boost number 
for boost 1 to boost 10. (b) Graph the gamma factor the same 
way. (c) How many boosts does it take until the velocity of the 
ship in 5 is greater than 0.999c? (d) How far has the spaceship 
moved after 5 boosts, as measured in reference frame 5?  What is 
the average speed of the spaceship (between boost 1 and boost 
5) as measured in 5 ?  

The Relativistic Doppler Effect 
---------------=----

2S • Sodium light of wavelength 589 nm is emitted by a 
source that is moving toward the earth with speed v. The 
wavelength measured in the frame of the earth is 547 nm. 
Find v. 

26 • A distant galaxy is moving away from us at a speed 
of 1.85 X 107 m/s. Calculate the fractional red shift (A' - Ao)/ Ao 
in the light from this galaxy. 

27 • •  Derive Equation 39-16a for the frequency received 
by an observer moving with speed v toward a stationary 
source of electromagnetic waves. 

28 • Show that if v is much less than c, the Doppler shift 
is given approximately by 

N/f = ±v/c 

29 . .  IssMI A clock is placed in a satellite that orbits the 
earth with a period of 90 min. By what time interval will this 
clock differ from an identical clock on the earth after 1 y? 
(Assume that special relativity applies and neglect general 
relativity.) 

30 • •  For light that is Doppler-shifted with respect to an 
observer, define the redshift parameter 

f - f' 

z = r 



where f is the frequency of the light measured in the rest 
frame of the emitter, and f' is the frequency measured in the 
rest frame of the observer. If the emitter is moving directly 
away from the observer, show that the relative velocity be­
tween the emitter and the observer is (U2 - 1 ) 

v = e  ---
u2 + 1 

where U = z + 1 .  
3 1  • A light beam moves along the y' axis with speed e 

in frame 5 ' ,  which is moving to the right with speed v relative 
to frame 5. (a) Find the x and y components of the velocity of 
the light beam in frame 5. (b) Show that the magnitude of the 
velocity of the light beam in 5 is e. 

32 • A spaceship is moving east at speed 0.90e relative 
to the earth. A second spaceship is moving west at speed 0.90e 
relative to the earth. What is the speed of one spaceship rela­
tive to the other spaceship? 

33 . .  IssMI A particle moves with speed 0.8e along the 
x" axis of frame 5", which moves with speed 0.8e along the 
x ' axis relative to frame 5 ' .  Frame 5 '  moves with speed 0.8e 
along the x axis relative to frame 5. (a) Find the speed of the 
particle relative to frame 5 ' .  (b) Find the speed of the particle 
relative to frame 5. 

Relativistic Momentum and Relativistic Energy 

34 • IssMI A proton (rest energy 938 MeV) has a total 
energy of 2200 MeV. (a) What is its speed? (b) What is its 
momentum? 

35 • If the kinetic energy of a particle equals twice its 
rest energy, what percentage error is made by using p = 111U 
for its momentum? 

36 • •  - hI./ A particle with momentum of 6 Me V I e 
has total energy of 8 MeV. (a) Determine the mass of the parti­
cle. (b) What is the energy of the particle in a reference frame 
in which its momentum is 4 MeV Ie? (e) What are the relative 
velocities of the two reference frames? 

37 • •  Show that 

d = 111 1 - - du 
� 111 U ) ( U2)-3/2 

VI - (u2/e2) e2 

38 . .  ./ The KO particle has a mass of 497.7 
MeV le2 It decays into a 7T- and 7T + ,  each with mass 139.6 
MeV I e2. Following the decay of a KO, one of the pions is at 
rest in the laboratory. Determine the kinetic energy of the 
other pion and of the KO prior to the decay. 

39 • •  IssMI Two protons approach each other head-on at 
O.Se relative to reference frame 5 ' .  (a) Calculate the total 
kinetic energy of the two protons as seen in frame 5 ' .  (b) Cal­
culate the total kinetic energy of the protons as seen in refer­
ence frame 5, which is moving with speed O.Se relative to 5' so 
that one of the protons is at rest. 

40 • •  An antiproton has the same rest energy as a proton. 
It is created in the reaction p + p � p + P + P + p. In an 
experiment, protons at rest in the laboratory are bombarded 
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with protons of kinetic energy Ku which must be great 
enough so that kinetic energy equal to 2111e2 can be converted 
into the rest energy of the two particles. In the frame of the 
laboratory, the total kinetic energy cannot be converted into 
rest energy because of conservation of momentum. However, 
in the zero-momentum reference frame in which the two ini­
tial protons are moving toward each other with equal speed u, 
the total kinetic energy can be converted into rest energy. 
(a) Find the speed of each proton u so that the total kinetic en­
ergy in the zero-momentum frame is 2111e 2. (b) Transform to 
the laboratory's frame in which one proton is at rest, and find 
the speed u '  of the other proton. (e) Show that the kinetic 
energy of the moving proton in the laboratory's frame is 
KL = 6111e2. 

41 • •  • A particle of mass 1 MeV I e 2 and kinetic 
energy 2 MeV collides with a stationary particle of mass 
2 Me V I e 2. After the collision, the particles stick together. Find 
(a) the speed of the first particle before the collision, (b) the 
total energy of the first particle before the collision, (e) the ini­
tial total momentum of the system, (d) the total kinetic energy 
after the collision, and (e) the mass of the system after the 
collision. 

General Relativity 

42 . .  IssMI Light traveling in the direction of increasing 
gravitational potential undergoes a frequency redshift. Calcu­
late the shift in wavelength if a beam of light of wavelength 
A = 632.8 nm is sent up a vertical shaft of height L = 100 m. 

43 • •  Let us revisit a problem from Chapter 3: Two can-
nons are pointed directly toward each other, as shown in 
Figure 39-17. When fired, the cannonballs will follow the tra­
jectories shown. Point P is the point where the trajectories 
cross each other. Ignore the effects of air resistance. Using the 
principle of equivalence, show that if the cannons are fired si­
multaneously, the cannonballs will hit each other at point P. 

F I G U R E  3 9 · 1 7  Problem 43 

p 

44 • • •  A horizontal turntable rotates with angular 
speed w. There is a clock at the center of the turntable and one 
at a distance r from the center. In an inertial reference frame, 
the clock at distance r is moving with speed u = rw. (a) Show 
that from time dilation according to special relativity, time 
intervals Mo for the clock at rest and Mr for the moving clock 
are related by 

if rw « e 

(b) In a reference frame rotating with the table, both clocks are 
at rest. Show that the clock at distance r experiences a pseudo­
force Fr = 111rw2 in this accelerated frame and that this is 
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equivalent to a difference in gravitational potential between r 
and the origin of CPr - CPo = -� r2w2. Use this potential differ­
ence given in Part (b) to show that in this frame the difference 
in time intervals is the same as in the inertial frame. 

General Problems 

45 • How fast must a muon travel so that its mean life-
time is 46 f.LS if its mean lifetime at rest is 2 f.Ls? 

46 • i f l' i/ A distant galaxy is moving away from 
the earth with a speed that results in each wavelength re­
ceived on the earth being shifted so that A' = 2Au '  Find the 
speed of the galaxy relative to the earth. 

47 . .  IssMI Frames 5 and 5 '  are moving relative to each 
other along the x and x' axes. Observers in the two frames set 
their clocks to t = a when the origins coincide. In frame 5, 
event 1 occurs at Xl = 1 .0  e 'y and t1 = 1 Y and event 2 occurs at 
x2 = 2.0 e'y and t2 = 0.5 y. These events occur simultaneously 
in frame 5 ' .  (a) Find the magnitude and direction of the veloc­
ity of 5 '  relative to 5. (b) At what time do both these events 
occur as measured in 5 ' ?  

48 • •  An interstellar spaceship travels from the earth to a 
distant star system 12 light-years away (as measured in the 
earth's frame). The trip takes 15 y as measured on the space­
ship. (a) What is the speed of the spaceship relative to the 
earth? (b) When the ship arrives, it sends a signal to the earth. 
How long after the ship leaves the earth will it be before the 
earth receives the signal? 

49 • •  The neutral pion 7T 0 has a mass of 135 MeV / e2. This 
particle can be created in a proton-proton collision: 

p + p -+ p + P + 7T O 

Determine the threshold kinetic energy for the creation of a 
7T O in a collision of a moving proton and a stationary proton. 
(See Problem 40.) 
50 • •  A rocket with a proper length of 1 000 m moves in 

the +x direction at 0.6e with respect to an observer on the 
ground. An astronaut stands at the rear of the rocket and fires 
a bullet toward the front of the rocket at O.Se relative to the 
rocket. How long does it take the bullet to reach the front of 
the rocket (a) as measured in the frame of the rocket, (b) as 
measured in the frame of the ground, and (c) as measured in 
the frame of the bullet? 

51 . . .  IssMI In a simple thought experiment, Einstein 
showed that there is mass associated with electromagnetic 
radiation. Consider a box of length L and mass M resting on a 
frictionless surface. At the left wall of the box is a light source 
that emits radiation of energy E, which is absorbed at the 
right wall of the box. According to classical electromagnetic 
theory, this radiation carries momentum of magnitude p = Ele 
(Equation 32-13). (a) Find the recoil velocity of the box so that 
momentum is conserved when the light is emitted. (Since p 
is small and M is large, you may use classical mechanics.) 
(b) When the light is absorbed at the right wall of the box the 
box stops, so the total momentum remains zero. If we neglect 
the very small velocity of the box, the time it takes for the 
radiation to travel across the box is M = Lic. Find the distance 
moved by the box in this time. (c) Show that if the center of 

mass of the system is to remain at the same place, the radia­
tion must carry mass m = Ele2. 

52 • • •  Reference frame 5 ' is moving along the x'  axis at 
0.6e relative to frame 5. A particle that is originally at x' = 10 m 
at t; = a is suddenly accelerated and then moves at a constant 
speed of e/3 in the -x'  direction until time t� = 60 m/ e, when 
it is suddenly brought to rest. As observed in frame 5, find 
(a) the speed of the particle, (b) the distance and the direction 
that the particle traveled from t; to t� , and (c) the time the 
particle traveled. 

53 • • •  In reference frame 5, the acceleration of a particle is 
Ii = a) + ayJ + a/ e Derive expressions for the acceleration 
components a� , a; , and a� of the particle in reference frame 
5 '  that is moving relative to 5 in the x direction with velocity v. 

54 • • •  Using the relativistic conservation of momentum 
and energy and the relation between energy and momen­
tum for a photon E = pc, prove that a free electron (i.e., one 
not bound to an atomic nucleus) cannot absorb or emit a 
photon. 

55 • • •  IssMI When a projectile particle with kinetic energy 
greater than the threshold kinetic energy Kth strikes a station­
ary target particle, one or more particles may be created in the 
inelastic collision. Show that the threshold kinetic energy of 
the projectile is given by 

K = ( 2:min + 2:mfin) ( 2:mfin - 2:min)e2 
th 2111 target 

Here 2:min is the sum of the masses of the projectile and target 
particles, 2:mfin is the sum of the masses of the final particles, 
and mtarget is the mass of the target particle. Use this expres­
sion to determine the threshold kinetic energy of protons inci­
dent on a stationary proton target for the production of a 
proton-antiproton pair; compare your result with the result of 
Problem 40. 
56 • • •  A particle of mass M decays into two identical par­

ticles of mass m, where m = 0.3M. Prior to the decay, the parti­
cle of mass M has an energy of 4Me2 in the laboratory. The 
velocities of the decay products are along the direction of 
motion of M. Find the velocities of the decay products in the 
laboratory. 

57 • • •  A stick of proper length Lp makes an angle e with 
the x axis in frame 5. Show that the angle 8 '  made with the 
x'  axis in frame 5 ' ,  which is moving along the +x axis with 
speed v, is given by tan e '  = y tan e and that the length of the 
stick in 5 ' is 

( 1 )1/2 L' = L - cos2 (J + sin2 (J p 'Y 2 

58 • • •  Show that if a particle moves at an angle e with the 
x axis with speed u in frame 5, it moves at an angle e '  with the 
x'  axis in 5 '  given by 

sin (J 
tan (j' = ---::-------,-'Y [cos (J - ( v / u ) J 

59 . . .  IssMI For the special case of a particle moving with 
speed u along the y axis in frame 5, show that its momentum 
and energy in frame 5 ', a frame that is moving along the x axis 



with velocity v, are related to its momentum and energy in S 
by the transformation equations 

, ( VE) Px = 'Y Px - 2 ' 

� 
= 'Y(� _ VPx) 

c c c 

P� = pz 

Compare these equations with the Lorentz transformation for 
x',  y' ,  z ' , and t ' .  These equations show that the quantities Px' Py' Pz' and E/c transform in the same way as do x, y, z, and ct. 

60 • • •  The equation for the spherical wavefront of a light 
pulse that begins at the origin at time t = ° is x2 + y2 + 
Z2 - (ct)2 = 0. Using the Lorentz transformation, show that 
such a light pulse also has a spherical wavefront in frame S ' 
by showing that X'2 + y'2 + Z'2 - (ct ' )2 = 0 in S ' . 
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61 • • •  In Problem 60, you showed that the quantity 
x2 + y2 + Z2 - (ct)2 has the same value (0) in both S and S ' . 
Such a quantity is called an invariant. From the results of 
Problem 59, the quantity P; + pff + pi - E2! c2  must also be an 
invariant. Show that this quantity has the value -1112C2 in both 
the S and S ' reference frames. 

62 . . .  IssMI A long rod that is parallel to the x axis is 
in free fall with acceleration g parallel to the -y axis. An 
observer in a rocket moving with speed v parallel to the x axis 
passes by and watches the rod falling. Using the Lorentz 
transformations, show that the observer will measure the rod 
to be bent into a parabolic shape. Is the parabola concave 
upward or concave downward? 




