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Much of our discussion of the finite-well problem applies to any problem in 
which E > U(x) in some region and E < U(x) outside that region, as we see in the 
next section. 

35.3 T h e  H a r m o n i c  O s c i l l a to r  

The potential energy for a particle of mass m attached to a spring of force 
constant k is 

35-19 

where Wo = Vkj;;; is the natural frequency of the oscillator. Classically, the object 
oscillates between x = + A and x = -A. The object's total energy is E = !m w�A2, 
which can have any positive value or zero. 

This potential energy function, shown in Figure 35-6, applies to virtually any 
system undergoing small oscillations about a position of stable equilibrium. For 
example, it could apply to the oscillations of the atoms of a diatomic molecule, 
such as H2 or Hel, oscillating about their equilibrium separation. Between the 
classical turning points ( Ix l  < A) ,  the total energy is greater than the potential 
energy, and the Schrodinger equation can be written 

35-20 

where F = (2m/1i2) [E - U(x)] now depends on x. The solutions of this equation 
are no longer simple sine or cosine functions because the wave number k = 217/ A 
now varies with x; but since d2if;/ dx2 and if; have opposite signs, if; will always 
curve toward the axis and the solutions will oscillate. 

Outside the classical turning points ( Ix l  > A),  the potential energy is greater 
than the total energy and the Schrodinger equation is similar to Equation 35-17: 

d2if;(x) 
= + 2 ,1,( ) 

dx2 
a 'f' x 35-21 

except that here a2 = (2m /1i2) [U(x) - E] > 0 depends on x. For Ixl > A, d2if;/dx2 
and if; have the same sign, so if; will curve away from the axis and there will 
be only certain values of E for which solutions exist that approach zero as x ap
proaches infinity. 

For the harmonic oscillator potential energy function, the Schrodinger equa
tion is 

35-22 

Wave Functions and Energy Levels 

Rather than pursue a general solution to the Schrodinger equation for this system, 
we simply present the solution for the ground state and the first excited state. 

The ground-state wave function if;o(x) is found to be a Gaussian function 
centered at the origin: 

35-23 

where Ao and a are constants. This function and the wave function for the first 
excited state are shown in Figure 35-7. 
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FIG U R E 3 5· 7 (a) The ground-state 
wave function for the harmonic oscillator 
potential. (b) The wave function for the 
first excited state of the harmonic 
oscillator potential. 
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We see from this example that the ground-state energy is given by 

E = 
h2a 

= 
�

hw o m 2 0 35-24 

The first excited state has a node in the center of the potential well, just as with 
the particle in a box.t The wave function 1/J1 (X) is 

if;1 (X) = A1xe-nx2 

where a = mwo/2h, as in Example 35-1 .  This function 
is also shown in Figure 35-7. Substituting 1/J1(X) into 
the Schrodinger equation, as was done for I/Jo(x) in Ex
ample 35-1, yields the energy of the first excited state, 

In general, the energy of the nth excited state of the 
harmonic oscillator is 

E" = (n + �)hwo' n = 0, I, 2, . . . 35-26 

35-25 

U(x) 

E5 = (5 + � )llwo 

E4 = (4 +� ) IlWo 

1 E3 = (3 +2 )llwo 

E
2 

= (2 +�) IlWo 

1 E1 = (1 + 2 )  Ilwo 
as indicated in Figure 35-8. The fact that the energy 
levels are evenly spaced by the amount hwo is a pecu
liarity of the harmonic oscillator potential. As we saw 
in Chapter 34, the energy levels for a particle in a box, 
or for the hydrogen atom, are not evenly spaced. The 
precise spacing of energy levels is closely tied to the 
particular form of the potential energy function. 

o x 

FIG U R E 3 5 · 8  Energy levels in the harmonic oscillator potential. 

35·4 R e f l e c t i o n  a n d  Tra n s m i s s i o n  of 
E l e c t r o n  Wav e s :  B a r r i e r  P e n etrati o n  

In Sections 35-2 and 35-3, we were concerned with bound-state problems in 
which the potential energy is larger than the total energy for large values of Ix [ .  
In this section, we consider some simple examples of unbound states for which 
E is greater than U(x). For these problems, d21/J/ dx2 and �J have opposite signs, so 
If;(x) curves toward the axis and does not become infinite at large values of Ix l .  

Ste p Potential 

Consider a particle of energy E moving in a region in which the potential energy 
is the step function 

U(x) = 0, x < 0 

U(x) = Uw x > 0 

as shown in Figure 35-9 . We are interested in what happens when a particle 
moving from left to right encounters the step. 

The classical answer is simple. To the left of the step, the particle moves with 
a speed v = V2E/m. At x = 0,  an impulsive force acts on the particle. If the 
initial energy E is less than Uo' the particle will be turned around and will then 
move to the left at its original speed; that is, the particle will be reflected by the 
step. If E is greater than Uo' the particle will continue to move to the right but 
with reduced speed given by v = V2(E - Uo) /m .  We can picture this classical 
problem as a ball rolling along a level surface and coming to a steep hill of 
height h given by mgh = Uo. If the initial kinetic energy of the ball is less than 

U(x) 

I----- Uo 

x 

F I G  U R E 3 5 · 9  Step potential. A 
classical particle incident from the left, 
with total energy E > Uo' is always 
transmitted. The change in potential 
energy at x = 0 merely provides an 
impulsive force that reduces the speed 
of the particle. A wave incident from the 
left is partially transmitted and partially 
reflected because the wavelength 
changes abruptly at x = o. 

t Each higher-energy state has one additional node 
in the wave function. 




