## 35-3 The Harmonic Oscillafor

The potential energy for a particle of mass $m$ attached to a spring of force constant $k$ is

$$
U(x)=\frac{1}{2} k x^{2}=\frac{1}{2} m \omega_{0}^{2} x^{2}
$$

35-19
where $\omega_{0}=\sqrt{k / m}$ is the natural frequency of the oscillator. Classically, the object oscillates between $x=+A$ and $x=-A$. The object's total energy is $E=\frac{1}{2} m \omega_{0}^{2} A^{2}$, which can have any positive value or zero.


For the harmonic oscillator potential energy function, the Schrödinger equation is

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+\frac{1}{2} m \omega_{0}^{2} x^{2} \psi(x)=E \psi(x)
$$

## Wave Functions and Energy Levels

Rather than pursue a general solution to the Schrödinger equation for this system, we simply present the solution for the ground state and the first excited state.

The ground-state wave function $\psi_{0}(x)$ is found to be a Gaussian function centered at the origin:

$$
\psi_{0}(x)=A_{0} e^{-a x^{2}}
$$

where $A_{0}$ and $a$ are constants. This function and the wave function for the first excited state are shown in Figure 35-7.
(a)


FIGURE 35-7 (a) The ground-state wave function for the harmonic oscillator potential. (b) The wave function for the first excited state of the harmonic oscillator potential.

We see from this example that the ground-state energy is given by

$$
E_{0}=\frac{\hbar^{2} a}{m}=\frac{1}{2} \hbar \omega_{0}
$$

The first excited state has a node in the center of the potential well, just as with the particle in a box. ${ }^{+}$The wave function $\psi_{1}(x)$ is

$$
\psi_{1}(x)=A_{1} x e^{-a x^{2}}
$$

where $a=m \omega_{0} / 2 \hbar$, as in Example 35-1. This function is also shown in Figure 35-7. Substituting $\psi_{1}(x)$ into the Schrödinger equation, as was done for $\psi_{0}(x)$ in Example 35-1, yields the energy of the first excited state,

$$
E_{1}=\frac{3}{2} \hbar \omega_{0}
$$

In general, the energy of the $n$th excited state of the harmonic oscillator is

$$
E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega_{0}, \quad n=0,1,2, \ldots
$$

as indicated in Figure 35-8. The fact that the energy levels are evenly spaced by the amount $\hbar \omega_{0}$ is a peculiarity of the harmonic oscillator potential. As we saw in Chapter 34, the energy levels for a particle in a box, or for the hydrogen atom, are not evenly spaced. The precise spacing of energy levels is closely tied to the particular form of the potential energy function.


FIGURE 35-8 Energy levels in the harmonic oscillator potential.

