36-3 Quantum Theory of Atoms

The Schrodinger Equation in Spherical Coordinates

In quantum theory, the electron is described by its wave function ¢. The probabil-
ity of finding the electron in some volume dV of space equals the product of the
absolute square of the electron wave function |¢|? and dV. Boundary conditions
on the wave function lead to the quantization of the wavelengths and frequen-
cies and thereby to the quantization of the electron energy.

Consider a single electron of mass m moving in three dimensions in a region in
which the potential energy is U. The time-independent Schrédinger equation for
such a particle is given by Equation 35-30:
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For a singleisolated atom, the potential energy U depends only on the =~ _—

radial distance r = V2 + y2 + z2. The problem is then most conve- \"“{3{{70 >
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niently treated using the spherical coordinates r, 8, and ¢, which are re- .
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lated to the rectangular coordinates x, y, and z by y=rsinfsing
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These relations are shown in Figure 36-5. The transformation of the
bracketed term in Equation 36-19 is straightforward but involves much <~
tedious calculation, which we will omit. The result is
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FIGURE 36-5 Geometricrelations
between spherical coordinates and
rectangular coordinates.

Substituting into Equation 36-19 gives
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Despite the formidable appearance of this equation, it was not difficult for
Schrédinger to solve because it is similar to other partial differential equations in
classical physics that had been thoroughly studied. We will not solve this equa-
tion but merely discuss qualitatively some of the interesting features of the wave
functions that satisfy it.

The first step in the solution of a partial differential equation, such as Equa-
tion 36-21, is to separate the variables by writing the wave function ¢(r, 6, ¢) as
a product of functions of each single variable:

Y(r, 6, ¢) = R(r)f(0)g(¢) 36-22

where R depends only on the radial coordinate r, f depends only on 6§, and g
depends only on ¢. When this form of ¢ (7, 6, ¢) is substituted into Equation 36-21,
the partial differential equation can be transformed into three ordinary differen-
tial equations, one for R(r), one for f(8), and one for g(¢). The potential energy
U(r) appears only in the equation for R(r), which is called the radial equation.
The particular form of U(r) given in Equation 36-19 therefore has no effect on the
solutions of the equations for f(6) and g(¢), and therefore has no effect on the
angular dependence of the wave function ¢(r, 6, ¢). These solutions are applica-
ble to any problem in which the potential energy depends only on r.

Quantum Numbers in Spherical Coordinates

In three dimensions, the requirement that the wave function be continuous and
normalizable introduces three quantum numbers, one associated with each
spatial dimension. In spherical coordinates the quantum number associated
with r is labeled 1, that associated with 6is labeled ¢, and that associated with ¢
is labeled m,." The quantum numbers 1, 11,, and i, that we found in Chapter 35 +For simplicity, i1, is sometimes written as 1.
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for a particle in a three-dimensional square well in rectangular coordinates x, y,
and z were independent of one another, but the quantum numbers associated
with wave functions in spherical coordinates are interdependent. The possible
values of these quantum numbers are

n=12,3,...
=0,1,2,3,...,n—1
m=—¢€(-€¢+1),...,-2,-1,0,1,2,..., (£ + 1), ¢ 36-23

QUANTUM NUMBERS IN SPHERICAL COORDINATES

That is, n can be any positive integer; { can be 0 or any positive integer up to
n —1;and m, can have 2¢ + 1 possible values, ranging from —{ to +{ in integral
steps.

The number 7 is called the principal quantum number. It is associated with
the dependence of the wave function on the distance r and therefore with the
probability of finding the electron at various distances from the nucleus. The
quantum numbers { and n1, are associated with the angular momentum of
the electron and with the angular dependence of the electron wave function. The
quantum number { is called the orbital quantum number. The magnitude L of
the orbital angular momentum L is related to the orbital quantum number ¢ by

L=V + 1)h 36-24

The quantum number m, is called the magnetic quantum number. It is related to
the component of the angular momentum along some direction in space. All
spatial directions are equivalent for an isolated atom, but placing the atom in a
magnetic field results in the direction of the magnetic field being separated out
from the other directions. The convention is that the z direction is chosen for the
magnetic-field direction. Then the z component of the angular momentum of the
electron is given by the quantum condition

L, =mh 36-25

This quantum condition arises from the boundary condition on the azimuth
coordinate ¢ that the probability of finding the electron at some arbitrary
angle ¢, must be the same as that of finding the electron at angle ¢, + 27 because
these are the same points in space.

If we measure the angular momentum of the electron in units of i, we see that
the angular-momentum magnitude is quantized to the value V(£ + 1) units
and that its component along any direction can have only the 2¢ + 1 values
ranging from —{ to +{ units. Figure 36-6 shows a vector-model diagram
illustrating the possible orientations of the angular-momentum vector for £ = 2.
Note that only specific values of 6 are allowed; that is, the directions in space
are quantized.

FIGURE 36-6 Vector-model diagram
illustrating the possible values of the z
component of the angular-momentum
vector for the case ( = 2. The magnitude
of the angular momentum is

L=#Ve +1)=HV2(2 + 1) =k Ve.




36-4 Quantum Theory of
the Hydrogen Atom

We can treat the simplest atom, the hydrogen atom, as a stationary nucleus, a
proton, that has a single moving particle, an electron, with kinetic energy p2/2m.
The potential energy U(r) due to the electrostatic attraction between the electron
and the proton* is

kZe?
ue) = — re 36-26

For this potential-energy function, the Schrédinger equation can be solved
exactly. In the lowest energy state, which is the ground state, the principal
quantum number 1 has the value 1, £ is 0, and 1, is 0.

Energy Levels

The allowed energies of the hydrogen atom that result from the solution of the
Schrodinger equation are

mhk2e* E,
=—-——=-72— n=1,23,... 36-27
" 2#2n? n?
ENERGY LEVELS FOR HYDROGEN
where
mk?2e*
== = 13.6 eV 36-28
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