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where 111 and 11 2 are integers, with 11] > 112' and R is the Rydberg constant. The 
Rydberg constant is the same for all spectral series of the same element and 
varies only slightly in a regular way from element to element. For hydrogen, 
R has the value 

The Rydberg-Ritz formula gives the wavelengths for all the lines in the spectra of 
hydrogen, as well as alkali elements such as lithium and sodium. The hydrogen 
Balmer series given by Equation 36-1 is also given by Equation 36-2, with R = RH , 
11 2 = 2, and 11 1 = m .  

Many attempts were made to construct a model of the atom that would 
yield these formulas for its radiation spectrum. The most popular model, due to 
J. J .  Thomson, considered various arrangements of electrons embedded in some 
kind of fluid that contained most of the mass of the atom and had enough 
positive charge to make the atom electrically neutral. Thomson's model, called 
the "plum pudding" model, is illustrated in Figure 36-2. Since classical electro­
magnetic theory predicted that a charge oscillating with frequency f would 
radiate electromagnetic energy of that frequency, Thomson searched for configu­
rations that were stable and that had normal modes of vibration of frequencies 
equal to those of the spectrum of the atom. A difficulty of this model and all other 
models was that, according to classical physics, electric forces alone calmot 
produce stable equilibrium. Thomson was unsuccessful in finding a model that 
predicted the observed frequencies for any atom. 

The Thomson model was essentially ruled out by a set of experiments by 
H. W. Geiger and E. Marsden, under the supervision of E. Rutherford in approxi­
mately 1911, in which alpha particles from radioactive radium were scattered by 
atoms in a gold foil. Rutherford showed that the number of alpha particles 
scattered at large angles could not be accounted for by an atom in which the 
positive charge was distributed throughout the atomic size (known to be about 
0.1 nm in diameter) but required that the positive charge and most of the mass 
of the atom be concentrated in a very small region, now called the nucleus, of 
diameter of the order of 10-6 nm = 1 fm. 

3&.2 T h e  B o h r  M o d e l  o f  
t h e  H yd r o g e n  A t o m  

Niels Bohr, working in the Rutherford laboratory in 1912, proposed a model of 
the hydrogen atom that extended the work of Planck, Einstein, and Rutherford 
and successfully predicted the observed spectra. According to Bohr 's model, the 
electron of the hydrogen atom moves under the influence of the Coulomb attrac­
tion to the positive nucleus according to classical mechanics, which predicts 
circular or elliptical orbits with the force center at one focus, as in the motion of 
the planets around the sun. For simplicity, Bohr chose a circular orbit, as shown 
in Figure 36-3. 

Energy for a C irc u lar Or bit  

Consider an  electron of  charge -e moving in a circular orbit o f  radius r about a 
positive charge 2e such as the nucleus of a hydrogen atom (2 = 1) or of a singly 

F I G  U R E 3 6 - 2 J. J. Thomson's plum 
pudding model of the atom. In this 
model, the negative electrons are 
embedded in a fluid of positive charge. 
For a given configuration in such a 
system, the resonance frequencies 
of oscillations of the electrons can 
be calculated. According to classical 
theory, the atom should radiate light 
of frequency equal to the frequency of 
oscillation of the electrons. Thomson 
could not find any configuration that 
would give frequencies in agreement 
with the measured frequencies of the 
spectrum of any atom. 
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F I G  U R E 3 6 · 3  Electron of charge -e 
traveling in a circular orbit of radius r 
around the nuclear charge +Ze. The 
attractive electrical force kZe2/r2 keeps 
the electron in its orbit. 
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ionized helium atom (Z = 2). The total energy of the electron can be related to the 
radius of the orbit. The potential energy of the electron of charge -e at a distance 
l' from a positive charge Ze is 

36-3 
l' 

where k is the Coulomb constant. The kinetic energy K can be obtained as a func­
tion of l' by using Newton's second law, Fnet = mao Setting the Coulomb attractive 
force equal to the mass times the centripetal acceleration gives 

kZe2 v2 
-- = m-

1'2 l' 

Multiplying both sides by l' /2 gives 

1 1 kZe2 
K = - mv2 = - --

2 2 l' 

36-4a 

36-4b 

Thus, the kinetic energy and the potential energy vary inversely with 1'. Note that 
the magnitude of the potential energy is twice that of the kinetic energy: 

u = -2K 36-5 

This is a general result in 1 / 1'2 force fields. It also holds for circular orbits in a 
gravitational field (see Example 11-6 in Section 11-3). The total energy is the sum 
of the kinetic energy and the potential energy: 

or 

1 kZe2 kZe2 
E = K + U = - -- - -

E =  
1 kZe2 

-- --
2 r 

2 l' l' 
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ENERGY IN A CIRCULAR ORBIT FOR A 1 /  r2 FORCE 

Although mechanical stability is achieved because the Coulomb attractive 
force provides the centripetal force necessary for the electron to remain in orbit, 
classical electromagnetic theory says that such an atom would be unstable electri­
cally. The atom would be unstable because the electron must accelerate when 
moving in a circle and therefore radia te electromagnetic energy of frequency 
equal to that of its motion. According to the classical theory, such an atom would 
quickly collapse, with the electron spiraling into the nucleus as it radiates away 
its energy. 

Bohr's Postulates 

Bohr circumvented the difficulty of the collapsing atom by postulating that only 
certain orbits, called stationary states, are allowed, and that in these orbits the 
electron does not radiate. An atom radiates only when the electron makes a 
transition from one allowed orbit (stationary state) to another. 
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The electron in the hydrogen atom can move only in certain nonradiating, 
circular orbits called stationary states. 

BOHR'S FIRST POSTULATE-NON RADIATING ORBITS 

The second postulate relates the frequency of radiation to the energies of the 
stationary states. If Ej and Ef are the initial and final energies of the atom, the 
frequency of the emitted radiation during a transition is given by 

36-7 

BOHR'S SECOND POSTULATE-PHOTON FREQUENCY FROM ENERGY CONSERVATION 

where h is Planck's constant. This postulate is equivalent to the assumption of 
conservation of energy with the emission of a photon of energy hf. Combining 
Equation 36-6 and Equation 36-7, we obtain for the frequency 

36-8 

where 1'1 and 1'2 are the radii of the initial and final orbits. 
To obtain the frequencies implied by the Rydberg-Ritz formula, f = c/;\ 

cR(l / n �  - 1/ n i ), i t  is evident that the radii of  stable orbits must be proportional 
to the squares of integers. Bohr searched for a quantum condition for the radii of 
the stable orbits that would yield this result. After much trial and error, Bohr 
found that he could obtain it if he postulated that the angular momentum of 
the electron in a stable orbit equals an integer times Ii ("bar," Planck's constant 
divided by 2 17). Since the angular momentum of a circular orbit is just mvr, this 
postulate is 

nh 
mvr = 

2 17 
= nli, n = 1, 2, 3, . . .  36-9 

BOHR'S THIRD POSTULATE-QUANTIZED ANGULAR MOMENTUM 

where Ii = h/217 = 1 .055 X 10-34 J · s  = 6.582 X 10-16 eV·s. 
Equation 36-9 relates the speed v to the radius r. Equation 36-4a, from 

Newton's second law, gives us another equation relating the speed to the 
radius: 

or 

kZe2 v2 
-- = m -

1'2 l' 

kZe2 
v2 = -­

m r  
36-10 

We can determine l' by eliminating v between Equations 36-9 and 36-10 .  Solving 
Equation 36-9 for v and squaring gives 
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Equating this expression for v2 with the expression given by Equation 36-10, 
we get 

Solving for r, we obtain 

36-11 

RADIUS OF THE BOHR ORBITS 

where ao is called the first Bohr radius. 

h2 
ao = -

k 2 
= 0.0529 run 

m e 
36-12 

FIRST BOHR RADIUS 

Substituting the expressions for l' in Equation 36-11 into Equation 36-8 for the 
frequency gives 

f - 1 kZe2 ( 1 1 ) 
_ 2 mPe4 ( 1 1 ) 

- 2 -17- � - � - Z 41Tn3 11� 
- l1i 36-13 

If we compare this expression with Z = 1 for 
f 

= c/ A with the empirical 
Rydberg-Ritz formula (Equation 36-2), we obtain for the Rydberg constant 

36-14 

Using the values of 111, e, and h known in 1913, Bohr calculated R and found his 
result to agree (within the limits of the uncertainties of the constants) with the 
value obtained from spectroscopy. 

STANDING-WAVE CONDITION IMPLIES 

QUANTIZATION OF ANGULAR MOMENTUM 

E X A M P L E  3 6 - 1 

For waves in a circle, the standing-wave condition is that there is an integral 

number of wavelengths in the circumference. That is, n"\ = 217'1', where n = 1, 2, 3, 
and so on. Show that this condition for electron waves implies quantization of 

� angular momentum. 

1. Write the standing-wave condition: 

2. Use the de Broglie relation (Equation 34-10) to relate the 
momentum p to A :  

3. The angular momentum of an electron in a circular orbit 
is mvr = PI', where p = 111 V: 

I1A = 2 m' 

11 1111 h P = - = -- = 11 -
A 21Tr l' 

L = 111vr = pr = � 
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Energy Levels 

The total mechanical energy of the electron in the hydrogen atom is related to 
the radius of the circular orbit by Equation 36-6. If we substitute the quantized 
values of r as given by Equation 36-11, we obtain 

or 

1 kZe2 E = -- -" 2 r 

1 kZ2e2 -- --
2 112ao 

where 

mk2e4 1 ke2 
E = -- = - - =  13.6 eY o 2h2 2 ao 

1 mk2Z2e4 
2 112h2 
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ENERGY LEVELS IN THE HYDROGEN ATOM 

36-16 

The energies E" with Z = 1 are the quantized allowed energies for the hydrogen 
atom. 

Transitions between these allowed energies result in the emission or absorp-
tion of a photon whose frequency is given by f = (Ej - Ef ) /h, and whose 
wavelength is 

e he A = - = --f Ej - Ef 
36-17  

As we found in Chapter 34, it is  convenient to  have the value of  he in electron­
volt nanometers: 

he = 1240 eY'nm 36-18 

Since the energies are quantized, the frequencies and wavelengths of the radi­
ation emitted by the hydrogen atom are quantized in agreement with the 
observed line spectrum. 

Figure 36-4 shows the energy-level diagram for hydrogen. The energy of the 
hydrogen atom in the ground state is E) = - 13.6 eV As 11 approaches infinity the 
energy approaches zero. The process of removing an electron from an atom is 
called ionization, and the energy required to remove the electron is the ioniza­

tion energy. The ionization energy of the ground-state hydrogen atom, which is 
also its binding energy, is 13 .6 eV A few transitions from a higher state to a lower 
state are indicated in Figure 36-4. When Bohr published his model of the hydro­
gen atom, the Balmer series, corresponding to 11 2 = 2 and 11) = 3, 4, 5, and so on; 
and the Paschen series, corresponding to 11 2 = 3 and 11) = 4, 5, 6, and so on, were 
known. In 1916, T. Lyman found the series corresponding to 11 2 = 1, and in 1922 
and 1924, F. Brackett and H. A. Pfund, respectively, found the series correspond­
ing to 112 = 4 and 11 2 = 5. Only the Balmer series lies in the visible portion of the 
electromagnetic spectrum. 

F I G  U R E 3 6  - 4 Energy-level diagram for hydrogen showing the first few transitions 
in each of the Lyman, Balmer, and Paschen series. The energies of the levels are given 
by Equation 36-15. 
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