Stability of time-reversal symmetry breaking spin liquid states in high-spin fermionic systems

Edina Szirmai

International School and Workshop on Anyon Physics of Ultracold Atomic Gases Kaiserslautern, 12-15. 12. 2014.

Outline

- Part I
 - Fundamentals of high spin systems
 - Spin wave description
 - Valence bond picture
- Part II
 - Competing spin liquid states of spin-3/2 fermions in a square lattice
 - Competing spin liquid states of spin-5/2 fermions in a honeycomb lattice
 - Properties of chiral spin liquid state
 - Stability of the spin liquid states beyond the mean-field approximation
 - Finite temperature behavior
 - Experimentally measurable quantities

In collaboration with:

- M. Lewenstein
- P. Sinkovicz
- G. Szirmai
- A. Zamora

PRA 88(R) 043619 (2013)

- PRA 84 011611 (2011)
- EPL 93, 66005 (2011)

Part II

Spin liquid phases

Bond operators

$$\chi_{i,j} = c_{i,\sigma}^{\dagger} c_{j,\sigma} = \chi_{j,i}^{\dagger}$$

$$H = J \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j$$

J > 0 antiferromagnetic coupling

Schwinger fermions

$$\vec{S}_i = \sum_{\alpha,\beta} c^{\dagger}_{i,\alpha} \, \vec{F}_{\alpha,\beta} \, c_{i,\beta}$$

$$\left\{c_{i,\alpha},c_{j,\beta}^{\dagger}\right\} = \delta_{i,j}\delta_{\alpha,\beta}$$

1 particle / site

$$H = -J \sum_{\langle i,j \rangle} c_{i,\alpha}^{\dagger} c_{j,\alpha} c_{j,\beta}^{\dagger} c_{i,\beta} + \sum_{i} \varphi_i \left(c_{i,\alpha}^{\dagger} c_{i,\alpha} - 1 \right)$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 = ∽ � � �

Spin liquid phases

Bond operators

$$\chi_{i,j} = c_{i,\sigma}^{\dagger} c_{j,\sigma} = \chi_{j,i}^{\dagger}$$

Local gauge invariance

$$\begin{split} c_{j,\alpha} &\to e^{i\theta_j} \, c_{j,\alpha} \\ c_{j,\alpha}^{\dagger} &\to e^{-i\theta_j} \, c_{j,\alpha}^{\dagger} \\ \chi_{i,j} &\to \chi_{i,j} e^{i(\theta_j - \theta_i)} \\ \varphi_i &\to \varphi_i - i\partial_t \varphi_i \end{split}$$

Plaquette operator

$$\Pi = \chi_{i,j}\chi_{j,k}\ldots\chi_{l,i}$$

$$H = -J\sum_{\langle i,j\rangle} c_{i,\alpha}^{\dagger} c_{j,\alpha} c_{j,\beta}^{\dagger} c_{i,\beta} + \sum_{i} \varphi_{i} \left(c_{i,\alpha}^{\dagger} c_{i,\alpha} - 1 \right)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへぐ

Mean-field bonds:
$$\chi_{i,j} \rightarrow \bar{\chi}_{i,j}$$

Plaquette operator $\Pi = \bar{\chi}_{i,j} \bar{\chi}_{j,k} \dots \bar{\chi}_{l,i} = \operatorname{Abs}[\Pi] e^{i\Phi}$

▲□▶▲□▶▲□▶▲□▶ □ のQで

- $\Phi = n\pi$ (*n* integer): no time reversal symmetry breaking.
- With nontrivial Φ : time reversal symmetry breaking.
 - Low lying excitations composite particle (spinon + an elementary flux) → anyons.
 - Effective gauge theory.

$F = \frac{3}{2}$ system on a square lattice

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

$F = \frac{3}{2}$ system on square lattice

Let us recall the n.n. Hamiltonian in the limit of strong repulsion:

$$egin{aligned} &\mathcal{H}_{eff}^{F=3/2}=\sum_{\langle i,j
angle}\left[g_{0}\,\mathscr{P}_{0}^{(i,j)}+g_{2}\,\mathscr{P}_{2}^{(i,j)}
ight]\ & ext{where}\,\,\,\mathscr{P}_{S}^{(i,j)}=c_{i,\sigma_{1}}^{\dagger}c_{j,\sigma_{2}}^{\dagger}c_{j,\sigma_{3}}c_{i,\sigma_{4}}\,\hat{P}_{S},\ & ext{and}\,\,\hat{P}_{S}\, ext{are antisymmetric.} \end{aligned}$$

Hamiltonian with 2 parameters.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

$F = \frac{3}{2}$ system on square lattice

Let us recall the n.n. Hamiltonian in the limit of strong repulsion:

$$\begin{split} H_{eff}^{F=3/2} &= \sum_{\langle i,j\rangle} \left[g_0 \mathscr{P}_0^{(i,j)} + g_2 \mathscr{P}_2^{(i,j)} \right] \\ \text{where } \mathscr{P}_S^{(i,j)} &= c_{i,\sigma_1}^{\dagger} c_{j,\sigma_2}^{\dagger} c_{j,\sigma_3} c_{i,\sigma_4} \hat{P}_S, \text{ and } \hat{P}_S \text{ are antisymmetric.} \end{split}$$

Hamiltonian with 2 parameters.

$$H_{\text{eff}}^{F=3/2} = \sum_{\langle i,j \rangle} \left[a_0 n_i n_j + a_1 \mathbf{S}_i \mathbf{S}_j + a_2 (\mathbf{S}_i \mathbf{S}_j)^2 + a_3 (\mathbf{S}_i \mathbf{S}_j)^3 \right]$$

Hamiltonian with 4 parameters

▲□▶▲□▶▲□▶▲□▶ □ のQで

$F = \frac{3}{2}$ system on square lattice

Let us recall the n.n. Hamiltonian in the limit of strong repulsion:

$$\begin{split} H_{eff}^{F=3/2} = \sum_{\langle i,j \rangle} \left[g_0 \mathscr{P}_0^{(i,j)} + g_2 \mathscr{P}_2^{(i,j)} \right] \\ \text{where } \mathscr{P}_S^{(i,j)} = c_{i,\sigma_1}^{\dagger} c_{j,\sigma_2}^{\dagger} c_{i,\sigma_3} c_{i,\sigma_4} \hat{P}_S, \text{ and } \hat{P}_S \text{ are antisymmetric.} \end{split}$$

Hamiltonian with 2 parameters.

$$H_{eff}^{F=3/2} = \sum_{\langle i,j \rangle} \left[a_0 n_i n_j + a_1 \mathbf{S}_i \mathbf{S}_j + a_2 (\mathbf{S}_i \mathbf{S}_j)^2 + a_3 (\mathbf{S}_i \mathbf{S}_j)^3 \right]$$

Hamiltonian with 4 parameters

One can exploit the fact that \hat{P}_0 and \hat{P}_2 are antisymmetric with respect to the exchange of the spin of the colliding particles leading to a new effective Hamiltonian:

$H_{eff} = \sum_{\langle i,j \rangle} \left[a_n \left(n_i n_j + \chi_{i,j}^{\dagger} \chi_{i,j} - n_i \right) + a_s \left(\mathbf{S}_i \mathbf{S}_j + \mathbf{B}_{i,j}^{\dagger} \mathbf{B}_{i,j} - \frac{15}{4} n_i \right) \right]$ E. Sz. and M. Lewenstein EPL 93 66005 (2011)

Site- and bond-centered operators

 $F = \frac{3}{2}$ system on square lattice

• $n_i = c_{i,\alpha}^{\dagger} c_{i,\alpha}$ (particle number at site *i*)

•
$$\mathbf{S}_i = c_{i,\alpha}^{\dagger} \mathbf{F}_{\alpha,\beta} c_{i,\beta}$$
 (spin at site *i*)

•
$$\chi_{i,j} = c^{\dagger}_{i,lpha} c_{j,lpha}$$
 (scalar valence bonds)

•
$$\mathbf{B}_{i,j} = c_{i,\alpha}^{\dagger} \mathbf{F}_{\alpha,\beta} c_{j,\beta}$$
 (vector valence bonds)

Nonuniform bond centered orders

- $\langle |\chi_{i,j}|^2 \rangle \propto \langle S_i S_j \rangle \rightarrow$ spin-Peierls distorsion B. Marston and J. Affleck PRB (1989)
- $\langle |\mathbf{B}_{i,j}|^2 \rangle \propto \langle \mathbf{Q}_i \mathbf{Q}_j \rangle \rightarrow$ quadrupole-Peierls distorsion

The nonlocal part of the mean-field Hamiltonian:

$$\left(a_{n}\langle\chi_{j,i}\rangle\,\delta_{\alpha,\beta}+a_{s}\langle\mathsf{B}_{j,i}\rangle\,\mathsf{F}_{\alpha,\beta}
ight)c_{i,\alpha}^{\dagger}c_{j,\beta}+H.c.$$

- A more suitable new link parameter: U_{i,j} = (B_{i,j}) F, with the usual inner product in the 3 dimensional space of the generators F.
 - $U_{i,j}$ is a member of SU(2)
 - 4×4 matrix for F = 3/2 fermionic atoms
- The SU(2) plaquette: $\Pi^{SU(2)} = U_{i,j}U_{j,k}U_{k,l}U_{l,i}$.
- The SU(2) plaquette $\Pi^{SU(2)}$ is also invariant under the U(1) gauge transformation defined above: $c_{i,\sigma} \rightarrow c_{i,\sigma} e^{i\phi_i}$, $\langle \chi_{i,j} \rangle \rightarrow \langle \chi_{i,j} \rangle e^{i(\phi_j \phi_i)}$, and $U_{i,j} \rightarrow U_{i,j} e^{i(\phi_j \phi_i)}$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

Mean-field phase diagram: F = 3/2, 1/4 filling, square lattice

Nonzero order parameters

- AFM: (S_i)
- box phase: $\langle \chi_{i,j} \rangle$
 - valence bond solid state
 - plaquettes with flux $\Phi = 0$, or $\pm \pi$

For the SU(4) line: C. Wu MPL (2006) E. Sz. and M. Lewenstein EPL 93 66005 (2011)

▲□▶▲□▶▲□▶▲□▶ □ のQで

Hamiltonian with magnetic field:

$$H^h = H^{MF} + h \sum_i \mathbf{S}_i.$$

Order parameters

 SU(2) dimer/ Quadrupole dimer:

$$\langle {\bf S}_i \rangle, \, \langle \chi_{i,j} \rangle, \, \langle {\bf B}_{i,j} \rangle$$

• SU(2) plaquette/ Quadrupole plaquette: $\langle \mathbf{S}_i \rangle, \langle \chi_{i,j} \rangle, \langle \mathbf{B}_{i,j} \rangle$

▲□▶▲□▶▲□▶▲□▶ □ のQで

E. Sz. and M. Lewenstein EPL 93 66005 (2011)

In presence of magnetic field

Linear Zeeman energy: $\omega_L = g_F \mu_B B$ Quadratic Zeeman energy: $\omega_q = \frac{\omega_L^2}{\omega_{hf}}$.

- ω_{hf} : hyperfine splitting (1-10 GHz)
- g_F: gyromagnetic factor
- μ_B: Bohr magneton

(ロ) (同) (三) (三) (三) (○) (○)

Linear Zeeman energy: $\omega_L = g_F \mu_B B$ Quadratic Zeeman energy: $\omega_q = \frac{\omega_L^2}{\omega_{hr}}$.

- ω_{hf} : hyperfine splitting (1-10 GHz)
- g_F: gyromagnetic factor
- μ_B: Bohr magneton

The quadratic Zeeman term can be neglected if $\frac{\omega_L}{\omega_q} \gg 1 \Rightarrow \frac{\omega_{hl}}{\omega_L} \gg 1$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ ・

Magnetic field was considered in units of t.

t has a maximum at $V_0 \approx \omega_R$, where $t \sim \omega_R \sim 1 - 100$ kHz. $(\omega_R/2\pi \sim 400.98$ kHz for ⁹Be) In optical lattice: $t = \omega_R \frac{2}{\pi} \xi^3 e^{-2\xi^2}$

- $\xi = (V_0 / \omega_R)^{1/4}$
- V₀ potential depth,
- ω_R recoil energy

Linear Zeeman energy: $\omega_L = g_F \mu_B B$ Quadratic Zeeman energy: $\omega_q = \frac{\omega_L^2}{\omega_{hr}}$.

- ω_{hf} : hyperfine splitting (1-10 GHz)
- g_F: gyromagnetic factor
- μ_B: Bohr magneton

The quadratic Zeeman term can be neglected if $\frac{\omega_L}{\omega_q} \gg 1 \Rightarrow \frac{\omega_{hl}}{\omega_L} \gg 1$

Magnetic field was considered in units of *t*.

t has a maximum at $V_0 \approx \omega_R$, where $t \sim \omega_R \sim 1 - 100$ kHz. $(\omega_R/2\pi \sim 400.98$ kHz for ⁹Be) In optical lattice: $t = \omega_R \frac{2}{\pi} \xi^3 e^{-2\xi^2}$

- $\xi = (V_0 / \omega_R)^{1/4}$
- V₀ potential depth,
- ω_R recoil energy

Result: the SU(2) plaquette state has the lowest energy at $\omega_L \sim 0.1 - 1t$ (0.1-100 kHz)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Linear Zeeman energy: $\omega_L = g_F \mu_B B$ Quadratic Zeeman energy: $\omega_q = \frac{\omega_L^2}{\omega_{hr}}$.

- ω_{hf} : hyperfine splitting (1-10 GHz)
- g_F: gyromagnetic factor
- μ_B: Bohr magneton

The quadratic Zeeman term can be neglected if $\frac{\omega_L}{\omega_q} \gg 1 \Rightarrow \frac{\omega_{hl}}{\omega_L} \gg 1$

Magnetic field was considered in units of *t*.

t has a maximum at $V_0 \approx \omega_R$, where $t \sim \omega_R \sim 1 - 100$ kHz. $(\omega_R/2\pi \sim 400.98$ kHz for ⁹Be) In optical lattice: $t = \omega_R \frac{2}{\pi} \xi^3 e^{-2\xi^2}$

- $\xi = (V_0 / \omega_R)^{1/4}$
- V₀ potential depth,
- ω_R recoil energy

Result: the SU(2) plaquette state has the lowest energy at $\omega_L \sim 0.1 - 1t$ (0.1-100 kHz)

 $\omega_{hf}/\omega_L \sim 10^4 - 10^7$

Competing spin liquid states of SU(6) symmetric spin-5/2 fermions on a honeycomb lattice

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Néel state vs. spin liquid state

Finite temperature field theory

 $H[c,c^{\dagger}] = -J \sum_{\langle i,j
angle} c^{\dagger}_{i,lpha} c_{j,lpha} c^{\dagger}_{j,eta} c_{i,eta}$

Finite temperature field theory

 $H[c,c^{\dagger}] = -J \sum_{\langle i,j
angle} c^{\dagger}_{i,lpha} c_{j,lpha} c^{\dagger}_{j,eta} c_{i,eta}$

Partition function: $Z = \int [dc] [d\overline{c}] \exp(-\int_0^\beta d\tau L[c,\overline{c}])$ $L[c,\overline{c}] = \sum_i \overline{c}_{i,\alpha} \partial_\tau c_{i,\alpha} + H$ and #atoms= #sites

- コン・4回シュービン・4回シューレー

Finite temperature field theory

$$H[c,c^{\dagger}] = -J \sum_{\langle i,j
angle} c^{\dagger}_{i,lpha} c_{j,lpha} c^{\dagger}_{j,eta} c_{i,eta}$$

Partition function: $Z = \int [dc] [d\overline{c}] \exp(-\int_0^\beta d\tau L[c,\overline{c}])$ $L[c,\overline{c}] = \sum_i \overline{c}_{i,\alpha} \partial_\tau c_{i,\alpha} + H$ and #atoms= #sites

Decoupling procedure:

Hubbard-Stratonovich transformation: $L[c, \overline{c}] \rightarrow L[c, \overline{c}; \varphi, \chi]$ auxiliary fields: φ_i (on-site, real), and $\chi_{i,j}$ (link, complex) $Z = \int [d\varphi] [d\chi] [dc] [d\overline{c}] \exp(-\int_0^\beta d\tau L[c, \overline{c}; \varphi, \chi]) = \int [d\varphi] [d\chi] Z[\varphi, \chi]$

・ロト・日本・日本・日本・日本

Finite temperature field theory

$$H[c,c^{\dagger}] = -J \sum_{\langle i,j
angle} c^{\dagger}_{i,lpha} c_{j,lpha} c^{\dagger}_{j,eta} c_{i,eta}$$

Partition function: $Z = \int [dc] [d\overline{c}] \exp(-\int_0^\beta d\tau L[c,\overline{c}])$ $L[c,\overline{c}] = \sum_i \overline{c}_{i,\alpha} \partial_\tau c_{i,\alpha} + H$ and #atoms= #sites

Decoupling procedure:

Hubbard-Stratonovich transformation: $L[c, \overline{c}] \rightarrow L[c, \overline{c}; \varphi, \chi]$ auxiliary fields: φ_i (on-site, real), and $\chi_{i,j}$ (link, complex) $Z = \int [d\varphi] [d\chi] [d\overline{c}] \exp(-\int_0^\beta d\tau L[c, \overline{c}; \varphi, \chi]) = \int [d\varphi] [d\chi] Z[\varphi, \chi]$

$$Z[\varphi,\chi] = \exp(-\int_0^\beta \mathrm{d} au \sum_{\langle i,j \rangle} \left[\frac{1}{J} |\chi_{i,j}|^2 + \ln\det\mathscr{G}_{i,j}(au)
ight])$$

Saddle-point \rightarrow and beyond...

Partition function and free energy

$$Z = \int D[c, \bar{c}] e^{-S[c, \bar{c}]}$$

$$S[c, \bar{c}] = \int_{0}^{\beta} d\tau \Big[\sum_{i} \bar{c}_{i,\alpha} (\partial_{\tau} + \varphi_{i}) c_{i,\alpha}$$

$$-J \sum_{\langle i,j \rangle} \bar{c}_{i,\alpha} c_{j,\alpha} \bar{c}_{j,\beta} c_{i,\beta} + \sum_{i} \varphi_{i} (\bar{c}_{i,\alpha} c_{i,\alpha} - 1)$$

$$F = -k_{B}T \ln Z$$

- コン・4回シュービン・4回シューレー

Partition function and free energy

$$Z = \int D[c, \bar{c}] e^{-S[c, \bar{c}]}$$

$$S[c, \bar{c}] = \int_0^\beta d\tau \Big[\sum_i \bar{c}_{i,\alpha} (\partial_\tau + \varphi_i) c_{i,\alpha}$$

$$-J \sum_{\langle i,j \rangle} \bar{c}_{i,\alpha} c_{j,\alpha} \bar{c}_{j,\beta} c_{i,\beta} + \sum_i \varphi_i (\bar{c}_{i,\alpha} c_{i,\alpha} - 1)$$

$$F = -k_B T \ln Z$$

Partition function after a Hubbard-Stratonovich transformation

$$Z = \int D[c, \bar{c}, \chi, \chi^*] e^{-S_{\rm HS}[c, \bar{c}, \chi, \chi^*]}$$
$$S_{\rm HS}[c, \bar{c}] = \int_0^\beta d\tau \bigg[\sum_i \bar{c}_{i,\alpha} (\partial_\tau + \varphi_i) c_{i,\alpha}$$
$$- \sum_{\langle i,j \rangle} \left(\chi_{i,j} \bar{c}_{j,\alpha} c_{i,\alpha} + \chi^*_{i,j} \bar{c}_{i,\alpha} c_{j,\alpha} - \frac{1}{J} |\chi_{i,j}|^2 \right) \bigg]$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Integrating out the fermion fields:

$$Z = \int D[\chi, \chi^*] e^{-\int_0^\beta \mathrm{d}\tau \sum_{\langle i,j \rangle} [\frac{1}{J} |\chi_{i,j}|^2 + \ln \det \mathcal{G}_{i,j}(\tau)]}$$
finite temperature Green's function

Integrating out the fermion fields:

$$Z = \int D[\chi, \chi^*] e^{-\int_0^\beta \mathrm{d}\tau \sum_{\langle i,j \rangle} [\frac{1}{J} |\chi_{i,j}|^2 + \ln \det \mathcal{G}_{i,j}(\tau)]}$$
finite temperature Green's function

Saddle-point approximation:

$$egin{aligned} \chi_{i,j}(\hat{q}) &= eta \, V ar{\chi}_{i,j} \delta_{\hat{q},0} + \delta \chi_{i,j}(\hat{q}), \ arphi_i(\hat{q}) &= eta \, V ar{arphi}_{i,0} + \delta arphi_i(\hat{q}). \end{aligned}$$

$$\left.\frac{\delta S_{\rm eff}[\{\delta\psi\}]}{\delta\psi}\right|_{\{\delta\psi\}=0}=0$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Integrating out the fermion fields:

$$Z = \int D[\chi, \chi^*] e^{-\int_0^\beta \mathrm{d}\tau \sum_{\langle i,j \rangle} [\frac{1}{J} |\chi_{i,j}|^2 + \ln \det \mathcal{G}_{i,j}(\tau)]}$$
finite temperature Green's function

Saddle-point approximation:

$$\chi_{i,j}(\hat{q}) = \beta V \bar{\chi}_{i,j} \delta_{\hat{q},0} + \delta \chi_{i,j}(\hat{q}), \qquad \left. \frac{\delta S_{\text{eff}}[\{\delta \psi\}]}{\delta \psi} \right|_{\{\delta \psi\}=0} = 0$$

$$\operatorname{tr}\log(\beta\mathscr{G}^{-1}) = \operatorname{tr}\log\left[\beta(\mathscr{G}_{(0)}^{-1} - \Sigma)\right] = \operatorname{tr}\log\left(\beta\mathscr{G}_{(0)}^{-1}\right) + \sum_{n=1}^{\infty} \frac{\operatorname{tr}(\mathscr{G}_{(0)}\Sigma)^n}{n}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Ground state spin liquid states

$$\chi_{i,j} = J \operatorname{tr} \left(\mathscr{G}_0 \frac{\partial \Sigma}{\partial \chi_{i,j}^*} \right)$$

$$_1 = \chi_1 \chi_2 \chi_3 \chi_4 \chi_5 \chi_6 = |\Pi_1| e^{i\phi_1}$$

◆□ > ◆□ > ◆豆 > ◆豆 > □ 豆

П

Ground state spin liquid states

$$\chi_{i,j} = J \operatorname{tr} \left(\mathscr{G}_0 \frac{\partial \Sigma}{\partial \chi_{i,j}^*} \right)$$

$$1 = \chi_1 \chi_2 \chi_3 \chi_4 \chi_5 \chi_6 = |\Pi_1| e^{i\phi_1}$$

	E
a) Chiral spin liquid state	-6.148
b) Straggered flux state	-6.062
c) Valence bond crystal	-6

Π

Staggered flux state

- has a triple degeneracy,
- is the honeycomb analog of the pi-flux phase
 - due to the frustrated nature of the dual lattice alternating fluxes are unfavorable here.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

・ロト・日本・モン・モン・モー・シック

Chiral spin liquid state

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Chiral spin liquid state

- chiral edge states appear,
- there is a nonzero transverse conductivity: C = 6,
- quasiparticle statistics is fractionalized, each spinon carries a $\Phi_0=\pi/3$ elementary flux.

Chiral spin liquid state

- The low energy fluctuations are phase fluctuations of the mean field, $\chi_{i,j} = \chi_{i,j}^{\text{mf}} e^{ia_{i,j}}$, and the lowest energy spinon excitations.
- $a_{i,j}$ is a gauge field, with the transformation property:

$$a_{i,j} \to a_{i,j} + \theta_i - \theta_j.$$

 The effective theory is then a U(1) Chern-Simons theory coupled to 6 spinon fields

$$\mathcal{L} = \frac{1}{8\pi q^2} (\mathbf{e}^2 - vb^2) - \frac{C}{4\pi} \epsilon^{\mu\nu\lambda} a_\mu \partial_\nu a_\lambda + \sum_{l=1}^6 \left[-ic_{l,\alpha}^{\dagger} (\partial_t - ia_0)c_{l,\alpha} + \frac{1}{2m_s} c_{l,\alpha}^{\dagger} (\partial_i + ia_i)^2 c_{l,\alpha} \right].$$

Detection through the magnetic structure factor:

$$S^{zz}(i,j;t) = \langle S_i^z(t) S_j^z(0) \rangle$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Finite temperature behavior

All the spin liquid phases "melt" around the same critical temperature.

э

Finite temperature behavior

All the spin liquid phases "melt" around the same critical temperature.

- No new state occurs as lowest free energy SP solution.
- The SP free energies approach each other without crossing.
- The chiral state remains the lowest free energy solution even at T > 0.

イロト 不得 とくほ とくほう

э

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへで

The quasiplaquette state collapses into the lower free energy chiral spin liquid state.

Experimentally measurable quantities

chiral spin liquid quasiplaquette 0.210 0.210 b) a) 0.190 0.204 0.204 0.200 0.198 0.198 0.200 10,196 0.192 0.192 0.190 0.186 0.186 Г k_{y} 0 0.180 تن. 0 0.180 0.174 0.174 .0.190 0.168 0.168 0.200 200 0.162 0.162 0,190 0.156 0.156 0.190 0.150 0.150 0 π $-\pi$ $-\pi$ 0 π k_x k_{r}

Structure factor: $S(\mathbf{r}, \tau; \mathbf{r}', 0) = \langle S_z(\mathbf{r}, \tau) S_z(\mathbf{r}', 0) \rangle$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Experimentally measurable quantities

chiral spin liquid quasiplaquette 0.210 0.210 a) b) 0.204 0.204 0.200 0.198 0.198 0.200 0.192 0 1 9 2 0.186 0.186 k_{y} 0 0.180 0.180 0.174 0.174 0.168 0.168 0.200 200 0.162 0.162 0.156 0.156 0.190 0.150 0.150 0 $-\pi$ π $-\pi$ 0 π k_x k_{r}

Structure factor: $S(\mathbf{r}, \tau; \mathbf{r}', 0) = \langle S_z(\mathbf{r}, \tau) S_z(\mathbf{r}', 0) \rangle$

Unambiguous features \rightarrow Suitable tool to distinguish the phases.

<ロ> <0</p>

Experimental measurable quantities

Spectral density: $\rho_{tot}(\omega) = \sum_{\mathbf{k}} \text{Im} S(\mathbf{k}, \omega)$

ヘロト 人間 とくほとくほとう

æ

Experimental measurable quantities

Spectral density: $\rho_{tot}(\omega) = \sum_{\mathbf{k}} \text{Im} S(\mathbf{k}, \omega)$

Unambiguous features \rightarrow Suitable tool to distinguish the phases.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Thank you for your attention

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ