
Stability of time-reversal symmetry breaking spin
liquid states in high-spin fermionic systems

Edina Szirmai

International School and Workshop on Anyon Physics of Ultracold Atomic Gases
Kaiserslautern, 12-15. 12. 2014.



Quantum simulations with ultracold atoms

Quantum simulation of
fundamental models (properties,
phenomena).

Novel behavior, completely new
phases are expected due to the
high spin.

High-Tc superconductors

Quantum information

Simulation of gauge theories



Quantum simulations with ultracold atoms

Quantum simulation of
fundamental models (properties,
phenomena).

Novel behavior, completely new
phases are expected due to the
high spin.

A possible explanation for the
mechanism of high-Tc

superconductivity and their strange
behavior in the non-superconducting
phase based on the strong magnetic
fluctuation in dopped Mott insulators.
These fluctuation can be treated within
the spin liquid concept.

High-Tc superconductors

Quantum information

Simulation of gauge theories



Quantum simulations with ultracold atoms

Quantum simulation of
fundamental models (properties,
phenomena).

Novel behavior, completely new
phases are expected due to the
high spin.

In topological phases of spin
liquids the quasiparticles have
fractional statistics. They are
nonlocal and resist well against
local perturbations. Promising qbit
candidates.

High-Tc superconductors

Quantum information

Simulation of gauge theories



Quantum simulations with ultracold atoms

Quantum simulation of
fundamental models (properties,
phenomena).

Novel behavior, completely new
phases are expected due to the
high spin.

Low energy excitations above spin
liquids can be described by
effective gauge theories. Aim: to
study various gauge theories with
ultracold atoms.

High-Tc superconductors

Quantum information

Simulation of gauge theories



Quantum simulations with ultracold atoms

Atoms loaded into an optical lattice

Periodic potential: standing wave laser light.

Interaction between the neutral atoms:

van der Waals interaction

in case of alkaline-earth atoms:
spin independent s-wave
collisions

Easy to control the model parameters:
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Fundamental properties of high-spin systems

The Hamiltonian:

H = Hkin + Hint

where Hint contains many
types of scattering
processes.

on-site interaction
=⇒

Pauli’s principle

The only nonzero terms are
completly antisymmetric for
the exchange of the spin of
the two scattering particles.
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Effective spin models in the strong coupling limit

The Hubbard Hamiltonian with n.n hopping and on-site interaction:
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Perturbation theory up to leading order
with respect to t .

t preserves S and Sz

nearest-neighbor hopping
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Effective Hamiltonian (spin-F fermions in the U/t → ∞ limit)

H = J ∑
〈i,j〉

c†
i,αc†

j,β cj,αci,β

nearest-neighbor interaction

the same spin dependence
that has the original model

no particle transport

Mott state

Without long range spin order/preserved spin rotational invariance:
spin liquid state
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Effective spin models in the strong coupling limit

(ni = c†
i,σ ci,σ , and Si = c†

i,σ Fσ ,σ ′ci,σ ′ )

Spin exchange appears explicitly in the Hamiltonian:

F = 1
2 : AFM Heisenberg model

Heff = J ∑〈i,j〉
(
SiSj − 1

4 ninj
)

F = 3
2 :

HF=3/2
eff = ∑〈i,j〉

[
a0 ninj + a1SiSj + a2(SiSj)

2 + a3(SiSj)
3
]

F = 5
2 :

HF=5/2
eff = ∑〈i,j〉

[
a0 ni nj +a1Si Sj +a2(Si Sj)

2 +a3(Si Sj)
3 +a4(Si Sj)

4 +a5(Si Sj)
5
]
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Antiferromagnetic Heisenberg model: Heff = J ∑〈i,j〉
(
SiSj − 1

4 ninj
)

Let us consider a two-site problem: Hi,j = JSiSj

Site-by-site picture:
|Sz

i = F ,Sz
j =−F

〉
: Ei,j =−JF 2.

BUT this is not an eigenstate of Hi,j = JSz
i Sz

j +
J
2 (S

+
i S−j +S−i S+

j ).
Let Sz fluctuate to gain energy

⇒ theory of AFM spin waves

Fluctuation above the classical Néel state:

Sublattice magnetization:
〈Sz

A〉=−〈Sz
B〉= F −∆F .

Description: magnon picture.

Large ∆F → "quantum melting"→

Spin liquid
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Antiferromagnetic Heisenberg model: Heff = J ∑〈i,j〉
(
SiSj − 1

4 ninj
)

Basic concepts of AFM SWT and magnon picture:

Description of the spin wave excitations→ boson operators.

Holstein-Primakoff transformation (and similar for sublattice B):

S+
A,j =

(
2F −a†

j aj

)1/2
aj S−A,j = a†

j

(
2F −a†

j aj

)1/2

Sz
A,j = 2−a†

j aj

Interacting boson system→ (SiSj)
p multiboson int.

Linear spin wave theory: no magnon-magnon interaction.

The ground state energy/bond (LSWT): Ei,j =−JF(F + ζ ), with
0 < ζ < 1 and geometry-dependent.

If ∆F large from the LSWT:
Beyond LSWT.

Change concept.
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Effective spin models in the strong coupling limit

Even in case of the simplest F = 1
2 case there exist lattices that

have ground state without breaking of spin rotational invariance
(no Néel order) in the thermodynamic limit.
Various disordered spin sates occur in e.g.

finite systems,
frustrated systems,
systems described by Hamiltonian with higher power of SiSj .

To describe these disordered states a powerful possibility:

valence bond picture.
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Valence bond picture
F = 1/2 AFM Heisenberg model

Fazekas, Electron Correlation and Magnetism (1999)

Affleck, Kennedy, Lieb, Tasaki, Valence Bond Ground States in Isotropic Quantum Antiferromagnets (1988)



Valence bond picture

Back to the two-site problem: Hi,j = JSiSj

Site-by-site picture:
|Sz

i = F ,Sz
j =−F

〉
: Ei,j =−JF 2.

BUT this is not an eigenstate of Hi,j = JSz
i Sz

j +
J
2 (S

+
i S−j +S−i S+

j ).
Let Sz fluctuate to gain energy

⇒ theory of AFM spin waves

Bond-by-bond picture:
Hi,j =−JF(F +1)+ J

2 (Si +Sj)
2 ⇒ |Si + Sj |= 0 (singlet)

Ei,j =−JF(F + 1)

⇒ theory of valence bonds
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Valence bond picture

Let us consider now larger lattice: H = ∑〈i,j〉Hi,j = J ∑〈i,j〉SiSj

[ij] = 1√
2
[α(i)β (j)−β (i)α(j)] = ji singlet bond

Usually longer bonds appear.

VB state: |VB
〉

= ∏
pairs
|[i, j]

〉
RVB state: |RVB

〉
= ∑

conf
∏
pairs

A (|i− j|)|[i, j]
〉

Approximation: nearest-neighbor RVB

P. W. Anderson (1973)
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Valence bond picture

1) Simplest RVB system:

L = 4, isotropic HM, F = 1/2

Ψ0 = 1√
3

([12][34] + [23][41]) = 1√
3

1 2

4 3

1 2

4 3

+

E0 =−2J.〈
Ψ0|Sz

j |Ψ0
〉

= 0, for ∀j .
〈Φ0|Sz

1Sz
2 |Ψ0〉=−1/6, and 〈Φ0|Sz

1Sz
3 |Ψ0〉= 1/12

⇒ No magnetic order but there is an AF correlation.
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Valence bond picture

2) One-dimensional J1-J2 isotropic AFM HM, F = 1/2

H(J1,J2) = J1 ∑
j

SiSj+1 + J2 ∑
j

SiSj+2

Majumdar-Ghosh model: J1 = 2J2 ≡ J.



Valence bond picture

2) One-dimensional J1-J2 isotropic AFM HM, F = 1/2

H(J1,J2) = J1 ∑
j

SiSj+1 + J2 ∑
j

SiSj+2

Majumdar-Ghosh model: J1 = 2J2 ≡ J.

H(J,J/2) =
J
4 ∑

j
(Sj−1 + Sj + Sj+1)2 + const.

The total spin of a "trion of site j" is either Strion = 1/2 or 3/2

E = J
4 LStrion (Strion + 1) + const. ⇒ S(j)

trion(GS) = 1/2.



Valence bond picture

2) One-dimensional J1-J2 isotropic AFM HM, F = 1/2

H(J1,J2) = J1 ∑
j

SiSj+1 + J2 ∑
j

SiSj+2
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4 ∑
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The total spin of a "trion of site j" is either Strion = 1/2 or 3/2

E = J
4 LStrion (Strion + 1) + const. ⇒ S(j)

trion(GS) = 1/2.

Construct such a state.
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2) One-dimensional J1-J2 isotropic AFM HM, F = 1/2

H(J1,J2) = J1 ∑
j

SiSj+1 + J2 ∑
j

SiSj+2

Majumdar-Ghosh model: J1 = 2J2 ≡ J.

S(j)
trion(GS) = 1/2
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2-fold degeneracy.

No magnetic order.

(Discrete) translational inv. is broken!

spin liquid
↔

valence bond solid



Valence bond picture
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Dimer order parameter: Dj = A〈Sj−1Sj −SjSj+1〉 (with A =−4/3J).

Why there is no resonance?

Cancellations only in the MG case (J2/J1 = 1/2).

Dimer ground state above J2/J1 ≈ 0.24.
Inhomogeneous: Dj 6= 0.
Only short range AF correlations.

RVB ground state below J2/J1 ≈ 0.24.
Homogeneous: Dj = 0.〈
Sz

j Sz
l

〉
decay algebraically→ quasi-long range AF correlations.
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