Stability of time-reversal symmetry breaking spin liquid states in high-spin fermionic systems

Edina Szirmai

International School and Workshop on Anyon Physics of Ultracold Atomic Gases
Kaiserslautern, 12-15. 12. 2014.

Quantum simulations with ultracold atoms

- Quantum simulation of fundamental models (properties, phenomena).
- Novel behavior, completely new phases are expected due to the high spin.

Quantum simulations with ultracold atoms

- Quantum simulation of fundamental models (properties, phenomena).
- Novel behavior, completely new phases are expected due to the high spin.

A possible explanation for the mechanism of high- T_{c}
superconductivity and their strange behavior in the non-superconducting phase based on the strong magnetic fluctuation in dopped Mott insulators. These fluctuation can be treated within the spin liquid concept.

- High- T_{C} superconductors

Quantum simulations with ultracold atoms

- Quantum simulation of fundamental models (properties, phenomena).
- Novel behavior, completely new phases are expected due to the high spin.

In topological phases of spin liquids the quasiparticles have fractional statistics. They are nonlocal and resist well against local perturbations. Promising qbit candidates.

- High- T_{c} superconductors
- Quantum information

Quantum simulations with ultracold atoms

- Quantum simulation of fundamental models (properties, phenomena).
- Novel behavior, completely new phases are expected due to the high spin.

Low energy excitations above spin liquids can be described by effective gauge theories. Aim: to study various gauge theories with ultracold atoms.

- High- T_{c} superconductors
- Quantum information
- Simulation of gauge theories

Quantum simulations with ultracold atoms

Atoms loaded into an optical lattice

Quantum simulations with ultracold atoms

Atoms loaded into an optical lattice

- Periodic potential: standing wave laser light.

Quantum simulations with ultracold atoms

Atoms loaded into an optical lattice

- Periodic potential: standing wave laser light.
- Interaction between the neutral atoms:
- van der Waals interaction
- in case of alkaline-earth atoms: spin independent s-wave collisions

Quantum simulations with ultracold atoms

Atoms loaded into an optical lattice

- Periodic potential: standing wave laser light.
- Interaction between the neutral atoms:
\therefore S (electron spin)
L (orbital momentum)
$\mathrm{J}=\mathrm{S}+\mathrm{L}$ (total electron spin)
$\mathrm{F}=\mathrm{I}+\mathrm{J}$ (total hyperfine spin)
- van der Waals interaction
- in case of alkaline-earth atoms: spin independent s-wave collisions

Easy to control the model parameters:

- Interaction strength: Feshbach resonance
- Localization: laser intensity
- Lattice geometry

Outline

- Part I
- Fundamentals of high spin systems
- Spin wave description
- Valence bond picture
- Part II
- Competing spin liquid states of spin-3/2 fermions in a square lattice
- Competing spin liquid states of spin- $5 / 2$ fermions in a honeycomb lattice
- Properties of chiral spin liquid state
- Stability of the spin liquid states beyond the mean-field approximation
- Finite temperature behavior
- Experimentally measurable quantities

In collaboration with:
M. Lewenstein
P. Sinkovicz
G. Szirmai
A. Zamora

PRA 88(R) 043619 (2013)
PRA 84011611 (2011)
EPL 93, 66005 (2011)

Fundamental properties of high-spin systems

Fundamental properties of high-spin systems

The Hubbard Hamiltonian with n.n hopping and on-site interaction:

$$
H=-t \sum_{<i, j>} c_{i, \alpha}^{\dagger} c_{j, \alpha}+\sum_{i} U_{\gamma, \delta}^{\alpha, \beta} c_{i, \alpha}^{\dagger} c_{i, \beta}^{\dagger} c_{i, \delta} c_{i, \gamma}
$$

Fundamental properties of high-spin systems

The Hubbard Hamiltonian with n.n hopping and on-site interaction:

$$
H=-t \sum_{<i, j\rangle} c_{i, \alpha}^{\dagger} c_{j, \alpha}+\sum_{i} U_{\gamma, \delta}^{\alpha, \beta} c_{i, \alpha}^{\dagger} c_{i, \beta}^{\dagger} c_{i, \delta} c_{i, \gamma} .
$$

$$
\begin{aligned}
& S=\left|F_{1}-F_{2}\right|, \ldots\left|F_{1}+F_{2}\right| \\
& S_{z}=-S, \ldots S
\end{aligned}
$$

$$
F: \text { individual atoms, } S \text { : total spin of } 2 \text { scattering atoms }
$$

2 components: \uparrow, and \downarrow

$$
\begin{array}{r}
F_{1}=F_{2}=\frac{1}{2}, \\
S=0: S_{z}=0, \\
S=1: S_{z}=-1,0,1
\end{array}
$$

Fundamental properties of high-spin systems

The Hubbard Hamiltonian with n.n hopping and on-site interaction:

$$
H=-t \sum_{<i, j\rangle} c_{i, \alpha}^{\dagger} c_{j, \alpha}+\sum_{i} U_{\gamma, \delta}^{\alpha, \beta} c_{i, \alpha}^{\dagger} c_{i, \beta}^{\dagger} c_{i, \delta} c_{i, \gamma} .
$$

4 components: $\pm \frac{3}{2}$, and $\pm \frac{1}{2}$

$$
S=\left|F_{1}-F_{2}\right|, \ldots\left|F_{1}+F_{2}\right|
$$

$$
S_{z}=-S, \ldots S
$$

$$
F \text { : individual atoms, } S \text { : total spin of } 2 \text { scattering atoms }
$$

$$
\begin{array}{r}
F_{1}=F_{2}=\frac{3}{2} \\
S=0: S_{z}=0, \\
S=1: S_{z}=-1,0,1 \\
S=2: S_{z}=-2, \ldots, 2 \\
S=3: S_{z}=-3, \ldots, 3
\end{array}
$$

Fundamental properties of high-spin systems

The Hamiltonian:

$$
H=H_{k i n}+H_{i n t}
$$

where $H_{\text {int }}$ contains many
types of scattering
processes.
on-site interaction
\qquad
Pauli's principle

The only nonzero terms are completly antisymmetric for the exchange of the spin of the two scattering particles.

Fundamental properties of high-spin systems

The Hamiltonian:

$$
H=H_{k i n}+H_{i n t}
$$

where $H_{\text {int }}$ contains many types of scattering processes.
on-site interaction
\qquad
Pauli's principle

The only nonzero terms are completly antisymmetric for the exchange of the spin of the two scattering particles.

spin-1/2 fermions

Only singlet scatterings are allowed:

- $S_{\text {tot }}=0$

$$
\begin{aligned}
& H=-t \sum_{\langle i, j\rangle}\left(c_{i, \sigma}^{\dagger} c_{j, \sigma}+H . c .\right)+\sum_{i} U_{0} \mathscr{P}_{0}^{(i)}, \text { and } \\
& \mathscr{P}_{0}^{(i)}=c_{i, \uparrow}^{\dagger} c_{i, \downarrow}^{\dagger} c_{i, \downarrow} c_{i, \uparrow}=n_{i \uparrow} n_{i \downarrow} \text { projects to the singlet } \\
& \text { subspace } S_{\text {tot }}=0 .
\end{aligned}
$$

Fundamental properties of high-spin systems

The Hamiltonian:

$$
H=H_{k i n}+H_{i n t}
$$

where $H_{\text {int }}$ contains many types of scattering processes.
on-site interaction

Pauli's principle

The only nonzero terms are completly antisymmetric for the exchange of the spin of the two scattering particles.

spin-3/2 fermions

Classification of the allowed scattering processes:

- $S_{\text {tot }}=0$
\Longrightarrow the subspace $S_{\text {tot }}=S$.
T. L. Ho PRL (1998)
T. Ohmi and K. Machida JPSJ (1998)

Fundamental properties of high-spin systems

The Hamiltonian:

$$
H=H_{k i n}+H_{i n t}
$$

where $H_{\text {int }}$ contains many types of scattering processes.
on-site interaction

Pauli's principle

The only nonzero terms are completly antisymmetric for the exchange of the spin of the two scattering particles.

spin-5/2 fermions

Classification of the allowed scattering processes:

- $S_{\text {tot }}=0$
- $S_{t o t}=2$
- $S_{\text {tot }}=4$

$$
\begin{aligned}
& H=-t \sum_{\langle i, j\rangle}\left(c_{i, \sigma}^{\dagger} c_{j, \sigma}+H . c .\right) \\
& +\sum_{i}\left[U_{0} \mathscr{P}_{0}^{(i)}+U_{2} \mathscr{P}_{2}^{(i)}+U_{4} \mathscr{P}_{4}^{(i)}\right], \\
& \text { and } \mathscr{P}_{S}^{(i)}=c_{i, \sigma_{1}}^{\dagger} c_{i, \sigma_{2}}^{\dagger} c_{i, \sigma_{3}} c_{i, \sigma_{4}} \hat{P}_{S} \text {, where } \hat{P}_{S} \text { projects to } \\
& \text { the subspace } S_{t o t}=S \text {. }
\end{aligned}
$$

\Longrightarrow

Effective spin models in the strong coupling limit

The Hubbard Hamiltonian with n.n hopping and on-site interaction:

$$
H=-t \sum_{<i, j\rangle} c_{i, \alpha}^{\dagger} c_{j, \alpha}+U \sum_{i} c_{i, \alpha}^{\dagger} c_{i, \beta}^{\dagger} c_{i, \alpha} c_{i, \beta} .
$$

spin independent interaction $\rightarrow \mathrm{SU}(\mathrm{N})$ symmetry

Effective spin models in the strong coupling limit

The Hubbard Hamiltonian with n.n hopping and on-site interaction:

$$
H=-t \sum_{\langle i, j\rangle} c_{i, \alpha}^{\dagger} c_{j, \alpha}+U \sum_{i} c_{i, \alpha}^{\dagger} c_{i, \beta}^{\dagger} c_{i, \alpha} c_{i, \beta} .
$$

spin independent interaction $\rightarrow \mathrm{SU}(\mathrm{N})$ symmetry

Strongly repulsive limit: $U / t \rightarrow \infty$

repulsive interaction, $f=1 /(2 F+1)$ filling ($\#$ of particles $=\#$ of sites)

Perturbation theory up to leading order with respect to t.

- t preserves S and S_{z}
- nearest-neighbor hopping

Effective spin models in the strong coupling limit

Effective Hamiltonian (spin- F fermions in the $U / t \rightarrow \infty$ limit)

- nearest-neighbor interaction

$$
H=J \sum_{\langle i, j\rangle} c_{i, \alpha}^{\dagger} c_{j, \beta}^{\dagger} c_{j, \alpha} c_{i, \beta}
$$

- the same spin dependence that has the original model

Effective spin models in the strong coupling limit

Effective Hamiltonian (spin- F fermions in the $U / t \rightarrow \infty$ limit)

- nearest-neighbor interaction

$$
H=J \sum_{\langle i, j\rangle} c_{i, \alpha}^{\dagger} c_{j, \beta}^{\dagger} c_{j, \alpha} c_{i, \beta}
$$

- the same spin dependence that has the original model

Effective spin models in the strong coupling limit

Effective Hamiltonian (spin- F fermions in the $U / t \rightarrow \infty$ limit)

- nearest-neighbor interaction

$$
H=J \sum_{\langle i, j\rangle} c_{i, \alpha}^{\dagger} c_{j, \beta}^{\dagger} c_{j, \alpha} c_{i, \beta}
$$

- the same spin dependence that has the original model

Without long range spin order/preserved spin rotational invariance: spin liquid state

Effective spin models in the strong coupling limit

$$
\left(n_{i}=c_{i, \sigma}^{\dagger} c_{i, \sigma}, \text { and } \mathbf{S}_{i}=c_{i, \sigma}^{\dagger} \mathbf{F}_{\sigma, \sigma^{\prime}} c_{i, \sigma^{\prime}}\right)
$$

Spin exchange appears explicitly in the Hamiltonian:

- $F=\frac{1}{2}$: AFM Heisenberg model

$$
H_{e f f}=J \sum_{\langle i, j\rangle}\left(\mathbf{S}_{i} \mathbf{S}_{j}-\frac{1}{4} n_{i} n_{j}\right)
$$

$$
\left(n_{i}=c_{i, \sigma}^{\dagger} c_{i, \sigma}, \text { and } \mathbf{S}_{i}=c_{i, \sigma}^{\dagger} \mathbf{F}_{\sigma, \sigma^{\prime}} c_{i, \sigma^{\prime}}\right)
$$

Spin exchange appears explicitly in the Hamiltonian:

- $F=\frac{1}{2}$: AFM Heisenberg model

$$
H_{e f f}=J \sum_{\langle i, j\rangle}\left(\mathbf{S}_{i} \mathbf{S}_{j}-\frac{1}{4} n_{i} n_{j}\right)
$$

- $F=\frac{3}{2}$:

$$
H_{e f f}^{F=3 / 2}=\sum_{\langle i, j\rangle}\left[a_{0} n_{i} n_{j}+a_{1} \mathbf{S}_{i} \mathbf{S}_{j}+a_{2}\left(\mathbf{S}_{i} \mathbf{S}_{j}\right)^{2}+a_{3}\left(\mathbf{S}_{i} \mathbf{S}_{j}\right)^{3}\right]
$$

Effective spin models in the strong coupling limit

$$
\left(n_{i}=c_{i, \sigma}^{\dagger} c_{i, \sigma}, \text { and } \mathbf{S}_{i}=c_{i, \sigma}^{\dagger} \mathbf{F}_{\sigma, \sigma^{\prime}} c_{i, \sigma^{\prime}}\right)
$$

Spin exchange appears explicitly in the Hamiltonian:

- $F=\frac{1}{2}$: AFM Heisenberg model

$$
H_{\text {eff }}=J \sum_{\langle i, j\rangle}\left(\mathbf{S}_{i} \mathbf{S}_{j}-\frac{1}{4} n_{i} n_{j}\right)
$$

- $F=\frac{3}{2}$:

$$
H_{e f f}^{F=3 / 2}=\sum_{\langle i, j\rangle}\left[a_{0} n_{i} n_{j}+a_{1} \mathbf{S}_{i} \mathbf{S}_{j}+a_{2}\left(\mathbf{S}_{i} \mathbf{S}_{j}\right)^{2}+a_{3}\left(\mathbf{S}_{i} \mathbf{S}_{j}\right)^{3}\right]
$$

- $F=\frac{5}{2}$:

$$
H_{e f f}^{F=5 / 2}=\sum_{\langle i, j\rangle}\left[a_{0} n_{i} n_{j}+a_{1} \mathbf{S}_{i} \mathbf{S}_{j}+a_{2}\left(\mathbf{S}_{i} \mathbf{S}_{j}\right)^{2}+a_{3}\left(\mathbf{S}_{i} \mathbf{S}_{j}\right)^{3}+a_{4}\left(\mathbf{S}_{i} \mathbf{S}_{j}\right)^{4}+a_{5}\left(\mathbf{S}_{i} \mathbf{S}_{j}\right)^{5}\right]
$$

Antiferromagnetic Heisenberg model:

Let us consider a two-site problem:

$$
\mathscr{H}_{i, j}=\boldsymbol{J} \mathbf{S}_{i} \mathbf{S}_{j}
$$

- Site-by-site picture:

$$
\left|S_{i}^{z}=F, S_{j}^{z}=-F\right\rangle: \quad E_{i, j}=-J F^{2} .
$$

BUT this is not an eigenstate of $\mathscr{H}_{i, j}=J S_{i}^{z} S_{j}^{z}+\frac{J}{2}\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right)$.
Let S^{z} fluctuate to gain energy
$\Rightarrow \quad$ theory of AFM spin waves

Antiferromagnetic Heisenberg model:

Let us consider a two-site problem:

$$
\mathscr{H}_{i, j}=\boldsymbol{J} \mathbf{S}_{i} \mathbf{S}_{j}
$$

- Site-by-site picture:

$$
\left|S_{i}^{z}=F, S_{j}^{z}=-F\right\rangle: \quad E_{i, j}=-J F^{2}
$$

BUT this is not an eigenstate of $\mathscr{H}_{i, j}=J S_{i}^{2} S_{j}^{z}+\frac{J}{2}\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right)$.
Let S^{z} fluctuate to gain energy
\Rightarrow theory of AFM spin waves

Fluctuation above the classical Néel state:

- Sublattice magnetization:

$$
\left\langle S_{A}^{Z}\right\rangle=-\left\langle S_{B}^{Z}\right\rangle=F-\Delta F .
$$

- Description: magnon picture.

Antiferromagnetic Heisenberg model:

Let us consider a two-site problem:

$$
\mathscr{H}_{i, j}=\boldsymbol{J} \mathbf{S}_{i} \mathbf{S}_{j}
$$

- Site-by-site picture:

$$
\left|S_{i}^{z}=F, S_{j}^{z}=-F\right\rangle: \quad E_{i, j}=-J F^{2} .
$$

BUT this is not an eigenstate of $\mathscr{H}_{i, j}=J S_{i}^{2} S_{j}^{z}+\frac{J}{2}\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right)$.
Let S^{z} fluctuate to gain energy
\Rightarrow theory of AFM spin waves

Fluctuation above the classical Néel state:

- Sublattice magnetization:

$$
\left\langle S_{A}^{Z}\right\rangle=-\left\langle S_{B}^{Z}\right\rangle=F-\Delta F .
$$

- Description: magnon picture.

- Large $\Delta F \rightarrow$ "quantum melting" \rightarrow

Antiferromagnetic Heisenberg model:

Basic concepts of AFM SWT and magnon picture:

- Description of the spin wave excitations \rightarrow boson operators.
- Holstein-Primakoff transformation (and similar for sublattice B):

$$
\begin{gathered}
S_{A, j}^{+}=\left(2 F-a_{j}^{\dagger} a_{j}\right)^{1 / 2} a_{j} \quad S_{A, j}^{-}=a_{j}^{\dagger}\left(2 F-a_{j}^{\dagger} a_{j}\right)^{1 / 2} \\
S_{A, j}^{z}=2-a_{j}^{\dagger} a_{j}
\end{gathered}
$$

- Interacting boson system $\rightarrow\left(\mathbf{S}_{i} \mathbf{S}_{j}\right)^{p} \rightsquigarrow$ multiboson int.

Antiferromagnetic Heisenberg model:

Basic concepts of AFM SWT and magnon picture:

- Description of the spin wave excitations \rightarrow boson operators.
- Holstein-Primakoff transformation (and similar for sublattice B):

$$
\begin{gathered}
S_{A, j}^{+}=\left(2 F-a_{j}^{\dagger} a_{j}\right)^{1 / 2} a_{j} \quad S_{A, j}^{-}=a_{j}^{\dagger}\left(2 F-a_{j}^{\dagger} a_{j}\right)^{1 / 2} \\
S_{A, j}^{z}=2-a_{j}^{\dagger} a_{j}
\end{gathered}
$$

- Interacting boson system $\rightarrow\left(\mathbf{S}_{i} \mathbf{S}_{j}\right)^{p} \rightsquigarrow$ multiboson int.
- Linear spin wave theory: no magnon-magnon interaction.
- The ground state energy/bond (LSWT): $E_{i, j}=-J F(F+\zeta)$, with $0<\zeta<1$ and geometry-dependent.

Antiferromagnetic Heisenberg model:

Basic concepts of AFM SWT and magnon picture:

- Description of the spin wave excitations \rightarrow boson operators.
- Holstein-Primakoff transformation (and similar for sublattice B):

$$
\begin{gathered}
S_{A, j}^{+}=\left(2 F-a_{j}^{\dagger} a_{j}\right)^{1 / 2} a_{j} \quad S_{A, j}^{-}=a_{j}^{\dagger}\left(2 F-a_{j}^{\dagger} a_{j}\right)^{1 / 2} \\
S_{A, j}^{z}=2-a_{j}^{\dagger} a_{j}
\end{gathered}
$$

- Interacting boson system $\rightarrow\left(\mathbf{S}_{i} \mathbf{S}_{j}\right)^{p} \rightsquigarrow$ multiboson int.
- Linear spin wave theory: no magnon-magnon interaction.
- The ground state energy/bond (LSWT): $E_{i, j}=-J F(F+\zeta)$, with $0<\zeta<1$ and geometry-dependent.
- If ΔF large from the LSWT:
- Beyond LSWT.

Antiferromagnetic Heisenberg model:

Basic concepts of AFM SWT and magnon picture:

- Description of the spin wave excitations \rightarrow boson operators.
- Holstein-Primakoff transformation (and similar for sublattice B):

$$
\begin{gathered}
S_{A, j}^{+}=\left(2 F-a_{j}^{\dagger} a_{j}\right)^{1 / 2} a_{j} \quad S_{A, j}^{-}=a_{j}^{\dagger}\left(2 F-a_{j}^{\dagger} a_{j}\right)^{1 / 2} \\
S_{A, j}^{z}=2-a_{j}^{\dagger} a_{j}
\end{gathered}
$$

- Interacting boson system $\rightarrow\left(\mathbf{S}_{i} \mathbf{S}_{j}\right)^{p} \rightsquigarrow$ multiboson int.
- Linear spin wave theory: no magnon-magnon interaction.
- The ground state energy/bond (LSWT): $E_{i, j}=-J F(F+\zeta)$, with $0<\zeta<1$ and geometry-dependent.
- If ΔF large from the LSWT:
- Beyond LSWT.
- Change concept.

Effective spin models in the strong coupling limit

- Even in case of the simplest $F=\frac{1}{2}$ case there exist lattices that have ground state without breaking of spin rotational invariance (no Néel order) in the thermodynamic limit.
- Various disordered spin sates occur in e.g.
- finite systems,
- frustrated systems,
- systems described by Hamiltonian with higher power of $\mathbf{S}_{i} \mathbf{S}_{j}$.
- To describe these disordered states a powerful possibility:

Effective spin models in the strong coupling limit

- Even in case of the simplest $F=\frac{1}{2}$ case there exist lattices that have ground state without breaking of spin rotational invariance (no Néel order) in the thermodynamic limit.
- Various disordered spin sates occur in e.g.
- finite systems,
- frustrated systems,
- systems described by Hamiltonian with higher power of $\mathbf{S}_{i} \mathbf{S}_{j}$.
- To describe these disordered states a powerful possibility:

valence bond picture.

Valence bond picture
 $F=1 / 2$ AFM Heisenberg model

Fazekas, Electron Correlation and Magnetism (1999)
Affleck, Kennedy, Lieb, Tasaki, Valence Bond Ground States in Isotropic Quantum Antiferromagnets (1988)

Valence bond picture

Back to the two-site problem:

$$
\mathscr{H}_{i, j}=\boldsymbol{J} \mathbf{S}_{i} \mathbf{S}_{j}
$$

- Site-by-site picture:

$$
\left|S_{i}^{z}=F, S_{j}^{z}=-F\right\rangle: \quad E_{i, j}=-J F^{2}
$$

BUT this is not an eigenstate of $\mathscr{H}_{i, j}=J S_{i}^{2} S_{j}^{z}+\frac{J}{2}\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right)$.
Let S^{z} fluctuate to gain energy
\Rightarrow theory of AFM spin waves

Valence bond picture

Back to the two-site problem:

$$
\mathscr{H}_{i, j}=\boldsymbol{J} \mathbf{S}_{i} \mathbf{S}_{j}
$$

- Site-by-site picture:

$$
\left|S_{i}^{z}=F, S_{j}^{z}=-F\right\rangle: \quad E_{i, j}=-J F^{2}
$$

BUT this is not an eigenstate of $\mathscr{H}_{i, j}=J S_{i}^{z} S_{j}^{z}+\frac{J}{2}\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right)$.
Let S^{z} fluctuate to gain energy
$\Rightarrow \quad$ theory of AFM spin waves

- Bond-by-bond picture:

$$
\begin{aligned}
& \mathscr{H}_{i, j}=-J F(F+1)+\frac{J}{2}\left(\mathbf{S}_{i}+\mathbf{S}_{j}\right)^{2} \quad \Rightarrow \quad\left|\mathbf{S}_{i}+\mathbf{S}_{j}\right|=0 \text { (singlet) } \\
& E_{i, j}=-J F(F+1)
\end{aligned}
$$

\Rightarrow theory of valence bonds

Valence bond picture

Let us consider now larger lattice: $\quad \mathscr{H}=\sum_{\langle i, j\rangle} \mathscr{H}_{i, j}=J \sum_{\langle i, j\rangle} \mathbf{S}_{i} \mathbf{S}_{j}$

$$
[i j]=\frac{1}{\sqrt{2}}[\alpha(i) \beta(j)-\beta(i) \alpha(j)]={ }^{\mathrm{i}} \longrightarrow{ }^{\mathrm{j}} \quad \text { singlet bond }
$$

Valence bond picture

Let us consider now larger lattice:

$$
\mathscr{H}=\sum_{\langle i, j\rangle} \mathscr{H}_{i, j}=J \sum_{\langle i, j} \mathbf{S}_{\mathbf{i}} \mathbf{S}_{j}
$$

$$
[i j]=\frac{1}{\sqrt{2}}[\alpha(i) \beta(j)-\beta(i) \alpha(j)]={ }^{\mathrm{i}} \longrightarrow{ }^{\mathrm{j}} \quad \text { singlet bond }
$$

Singlet state on a lattice: letting all spins participate in pair bonds.

- The singlet basis for $L=4$:

Valence bond picture

Let us consider now larger lattice:

$$
\mathscr{H}=\sum_{\langle i, j\rangle} \mathscr{H}_{i, j}=J \sum_{\langle i, j} \mathbf{S}_{\mathbf{i}} \mathbf{S}_{j}
$$

$$
[i j]=\frac{1}{\sqrt{2}}[\alpha(i) \beta(j)-\beta(i) \alpha(j)]={ }^{\mathrm{i}} \longrightarrow{ }^{\mathrm{j}} \quad \text { singlet bond }
$$

Singlet state on a lattice: letting all spins participate in pair bonds.

- The singlet basis for $L=4$:

- One spin - one bond.
- Only non-crossing bonds:

Valence bond picture

Let us consider now larger lattice:

$$
\mathscr{H}=\sum_{\langle i, j\rangle} \mathscr{H}_{i, j}=J \sum_{\langle i, j\rangle} \mathbf{S}_{\mathbf{i}} \mathbf{S}_{j}
$$

$$
[i j]=\frac{1}{\sqrt{2}}[\alpha(i) \beta(j)-\beta(i) \alpha(j)]={ }^{\mathrm{i}} \longrightarrow{ }^{\mathrm{j}} \quad \text { singlet bond }
$$

$$
F=\frac{1}{2}
$$

$\mathbf{S}_{i} \mathbf{S}_{j}=-\frac{1}{2} \mathscr{P}_{0}^{(i, j)}+\frac{1}{4}$, and $\mathscr{P}_{0}^{(i, j)}$ projects to the singlet subspace

Resonate between different configurations of the valence (singlet) bonds.

Valence bond picture

Let us consider now larger lattice:

$$
\mathscr{H}=\sum_{\langle i, j\rangle} \mathscr{H}_{i, j}=J \sum_{\langle i, j} \mathbf{S}_{\mathbf{i}} \mathbf{S}_{j}
$$

$$
[i j]=\frac{1}{\sqrt{2}}[\alpha(i) \beta(j)-\beta(i) \alpha(j)]={ }^{\mathrm{i}} \longrightarrow{ }^{\mathrm{j}} \quad \text { singlet bond }
$$

- Usually longer bonds appear.
- VB state: $|V B\rangle=\prod_{\text {pairs }}|[i, j]\rangle$
- RVB state: $|R V B\rangle=\sum_{\text {conf pairs }} \prod_{\mathscr{A}}(|i-j|)|[i, j]\rangle$
- Approximation: nearest-neighbor RVB

P. W. Anderson (1973)

Valence bond picture

1) Simplest RVB system:
$L=4$, isotropic $H M, F=1 / 2$

$$
\Psi_{0}=\frac{1}{\sqrt{3}}([12][34]+[23][41])=\frac{1}{\sqrt{3}}\left(\square_{4}^{1}+\square_{4}^{2}+\prod_{3}^{2}\right)
$$

- $\mathscr{E}_{0}=-2 \mathrm{~J}$.
- $\left\langle\Psi_{0}\right| S_{j}^{z}\left|\Psi_{0}\right\rangle=0$, for $\forall j$.
- $\left\langle\Phi_{0}\right| S_{1}^{z} S_{2}^{z}\left|\Psi_{0}\right\rangle=-1 / 6$, and $\left\langle\Phi_{0}\right| S_{1}^{z} S_{3}^{z}\left|\Psi_{0}\right\rangle=1 / 12$

Valence bond picture

1) Simplest RVB system:
$L=4$, isotropic $\mathrm{HM}, F=1 / 2$

$$
\Psi_{0}=\frac{1}{\sqrt{3}}([12][34]+[23][41])=\frac{1}{\sqrt{3}}\left(\square_{4}^{1}+\square_{4}^{2}+\prod_{3}^{2}\right)
$$

- $\mathscr{E}_{0}=-2 \mathrm{~J}$.
- $\left\langle\Psi_{0}\right| S_{j}^{z}\left|\Psi_{0}\right\rangle=0$, for $\forall j$.
- $\left\langle\Phi_{0}\right| S_{1}^{z} S_{2}^{z}\left|\Psi_{0}\right\rangle=-1 / 6$, and $\left\langle\Phi_{0}\right| S_{1}^{z} S_{3}^{z}\left|\Psi_{0}\right\rangle=1 / 12$
\Rightarrow No magnetic order but there is an AF correlation.

Valence bond picture

2) One-dimensional $J_{1}-J_{2}$ isotropic AFM HM, $F=1 / 2$

$$
H\left(J_{1}, J_{2}\right)=J_{1} \sum_{j} \mathbf{s}_{i} \mathbf{S}_{j+1}+J_{2} \sum_{j} \mathbf{s}_{i} \mathbf{S}_{j+2}
$$

Valence bond picture

2) One-dimensional $J_{1}-J_{2}$ isotropic AFM HM, $F=1 / 2$

$$
H\left(J_{1}, J_{2}\right)=J_{1} \sum_{j} \mathbf{s}_{i} \mathbf{S}_{j+1}+J_{2} \sum_{j} \mathbf{s}_{i} \mathbf{S}_{j+2}
$$

- Majumdar-Ghosh model: $J_{1}=2 J_{2} \equiv J$.

$$
H(J, J / 2)=\frac{J}{4} \sum_{j}\left(\mathbf{S}_{j-1}+\mathbf{S}_{j}+\mathbf{S}_{j+1}\right)^{2}+\text { const } .
$$

- The total spin of a "trion of site j " is either $S_{\text {trion }}=1 / 2$ or $3 / 2$
- $E=\frac{J}{4} L S_{\text {trion }}\left(S_{\text {trion }}+1\right)+$ const $. \Rightarrow S_{\text {trion }}^{(j)}(G S)=1 / 2$.

Valence bond picture

2) One-dimensional $J_{1}-J_{2}$ isotropic AFM HM, $F=1 / 2$

$$
H\left(J_{1}, J_{2}\right)=J_{1} \sum_{j} \mathbf{s}_{i} \mathbf{S}_{j+1}+J_{2} \sum_{j} \mathbf{s}_{i} \mathbf{S}_{j+2}
$$

- Majumdar-Ghosh model: $J_{1}=2 J_{2} \equiv J$.

$$
H(J, J / 2)=\frac{J}{4} \sum_{j}\left(\mathbf{S}_{j-1}+\mathbf{S}_{j}+\mathbf{S}_{j+1}\right)^{2}+\text { const } .
$$

- The total spin of a "trion of site j " is either $S_{\text {trion }}=1 / 2$ or $3 / 2$
- $E=\frac{J}{4} L S_{\text {trion }}\left(S_{\text {trion }}+1\right)+$ const $. \Rightarrow S_{\text {trion }}^{(j)}(G S)=1 / 2$.
- Construct such a state.

Valence bond picture

2) One-dimensional $J_{1}-J_{2}$ isotropic AFM HM, $F=1 / 2$

$$
H\left(J_{1}, J_{2}\right)=J_{1} \sum_{j} \mathbf{s}_{i} \mathbf{s}_{j+1}+J_{2} \sum_{j} \mathbf{s}_{i} \mathbf{S}_{j+2}
$$

- Majumdar-Ghosh model: $J_{1}=2 J_{2} \equiv J$.

$$
S_{\text {trion }}^{(j)}(G S)=1 / 2
$$

- No magnetic order.
- (Discrete) translational inv. is broken!
spin liquid
\leftrightarrow
valence bond solid

Valence bond picture

- Dimer order parameter: $\mathscr{D}_{j}=A\left\langle\mathbf{S}_{j-1} \mathbf{S}_{j}-\mathbf{S}_{j} \mathbf{S}_{j+1}\right\rangle$ (with $\left.A=-4 / 3 J\right)$.
- Why there is no resonance?
- Cancellations only in the MG case $\left(J_{2} / J_{1}=1 / 2\right)$.

Valence bond picture

- Dimer order parameter: $\mathscr{D}_{j}=A\left\langle\mathbf{S}_{j-1} \mathbf{S}_{j}-\mathbf{S}_{j} \mathbf{S}_{j+1}\right\rangle$ (with $\left.A=-4 / 3 J\right)$.
- Why there is no resonance?
- Cancellations only in the MG case $\left(J_{2} / J_{1}=1 / 2\right)$.
- Dimer ground state above $J_{2} / J_{1} \approx 0.24$.
- Inhomogeneous: $\mathscr{D}_{j} \neq 0$.
- Only short range AF correlations.

Valence bond picture

- Dimer order parameter: $\mathscr{D}_{j}=A\left\langle\mathbf{S}_{j-1} \mathbf{S}_{j}-\mathbf{S}_{j} \mathbf{S}_{j+1}\right\rangle($ with $A=-4 / 3 J)$.
- Why there is no resonance?
- Cancellations only in the MG case $\left(J_{2} / J_{1}=1 / 2\right)$.
- Dimer ground state above $J_{2} / J_{1} \approx 0.24$.
- Inhomogeneous: $\mathscr{D}_{j} \neq 0$.
- Only short range AF correlations.
- RVB ground state below $J_{2} / J_{1} \approx 0.24$.
- Homogeneous: $\mathscr{D}_{j}=0$.
- $\left\langle\mathbf{S}_{j}^{z} \mathbf{S}_{l}^{z}\right\rangle$ decay algebraically \rightarrow quasi-long range AF correlations.

