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Quantum simulations with ultracold atoms

Spin-5/2 fermions
Spin-5/2 ultracold atom experiments
with 173Yb.

Various manganise complexes;
NaReO4, NH4ReO4 with 185Re or
187Re etc.
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Outline
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Competing spin liquid states of
spin-5/2 fermions in a honeycomb lattice

Properties of chiral spin liquid state
Stability of the spin liquid states beyond
the mean-field approximation
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Simulation of high spin magnetism

Atoms loaded into an optical lattice

Periodic potential: standing wave laser light.

Interaction between the neutral atoms:

van der Waals interaction

in case of alkaline-earth atoms:
spin independent s-wave
collisions

Easy to control the model parameters:

Interaction strength: Feshbach resonance

Localization: laser intensity

Lattice geometry
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Simulation of high spin magnetism

The Hubbard Hamiltonian with n.n hopping and on-site interaction:

H =−t ∑
<i,j>

c†
i,αcj,α + U ∑

i
c†

i,αc†
i,β ci,αci,β .

spin independent interaction→ SU(N) symmetry

Strongly repulsive limit: U/t → ∞

repulsive interaction, f = 1/(2F + 1) filling (# of particles = # of sites)

Perturbation theory up to leading order
with respect to t .

t preserves S and mS

nearest-neighbor hopping
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Simulation of high spin magnetism

Effective Hamiltonian (spin-F fermions in the U/t → ∞ limit)

H = J ∑
〈i,j〉

c†
i,αc†

j,β cj,αci,β

nearest-neighbor interaction

the same spin dependence
that has the original model

no particle transport

Without long range magnetic order: spin liquid state
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Competing spin liquid states of spin-5/2 fermions on
honeycomb lattice



Ground state spin liquid states — Technical details

Finite temperature field theory

H[c,c†] =−J ∑〈i,j〉 c
†
i,αcj,αc†

j,β ci,β

Partition function: Z =
∫

[dc][dc]exp(−
∫ β

0 dτ L[c,c])
L[c,c] = ∑i c i,α∂τci,α + H and #atoms= #sites

Decoupling procedure:

Hubbard-Stratonovich transformation: L[c,c]→ L[c,c;ϕ,χ]
auxiliary fields: ϕi (on-site, real), and χi,j (link, complex)

Z =
∫

[dϕ][dχ][dc][dc]exp(−
∫ β

0 dτ L[c,c;ϕ,χ]) =
∫

[dϕ][dχ]Z [ϕ,χ]

Z [ϕ,χ] = exp(−
∫ β

0 dτ ∑〈i,j〉
[

1
J |χi,j |2 + lndetGi,j(τ)

]
)

Saddle-point approximation→ and beyond...
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Ground state spin liquid states

χi,j = J tr
(
G0

∂Σ
∂ χ∗i,j

)
(Σ: self-energy)

Π1 = χ1χ2χ3χ4χ5χ6 = |Π1|eiφ1

b) c)a)
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Ground state — chiral spin liquid

Preserves the global SU(6)
invariance of the Hamiltonian and
every lattice symmetry.

Φ = 2π/3 flux generated per
plaquette⇒ spontenous time
reversal symmetry breaking.

Consequences:

Integer quantum-Hall effect,
transverse conductivity C = 6.

Chiral edge states appear.

Anyon quasiparticles: spinon with
Φ0 = π/3 elementary flux.

And
The low energy effective
theory is a U(1) gauge
theory: Chern-Simons
theory.
U(1) gauge theory simulator.
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Finite temperature behavior

chiral state quasiplaquette state plaquette state
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All the spin liquid phases "melt" around the same critical temperature.

No new state occurs as lowest free
energy SP solution.

The SP free energies approach each
other without crossing.

The chiral state remains the lowest
free energy solution even at T > 0. 0
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Stability analysis

Stability matrix : Cµ,ν ∼
∂ 2(G0Σ)2

∂ χµ∂ χν

chiral spin liquid quasiplaquette
a) b)
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The quasiplaquette state collapses into the lower free energy chiral
spin liquid state.
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Experimentally measurable quantities

Structure factor: S(r,τ; r′,0) = 〈Sz(r,τ)Sz(r′,0)〉
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Unambiguous features→ Suitable tool to distinguish the phases.
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Experimental measurable quantities

Spectral density: ρtot(ω) = ∑k ImS(k,ω)
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Summary

Time-reversal symmetry breaking spin liquid state of spin-5/2
fermionic atoms on honeycomb lattice.

Stable even at finite temperature.

Experimentally probable.

→ Simulation of a U(1) gauge theory.
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